Skip to main content

Advertisement

Log in

Patellar osteochondritis dissecans: maturation-dependent patellofemoral joint characteristics

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

The likelihood of healing of osteochondritis dissecans decreases with skeletal maturity and there are theories that abnormal biomechanical forces contribute to the development and progression of these lesions.

Objective

To characterize, according to regional skeletal maturity, the morphology and alignment indices of the patellofemoral joint on MRI in patients with patellar osteochondritis dissecans.

Materials and methods

MRI examinations of patients with patellar osteochondritis dissecans obtained between January 2008 and May 2023 were retrospectively reviewed to determine regional skeletal maturity, osteochondritis dissecans lesion size and location, patellar and trochlear morphology (Wiberg/Dejour classifications), and to calculate trochlear sulcus angles, trochlear depth index, lateral trochlear inclination, Insall-Salvati index, Caton-Deschamps index, patellar tendon-lateral trochlear ridge, and tibial tubercle-trochlear groove distances. Values were compared between skeletally immature and mature groups.

Results

Sixty-eight children (22 girls, 46 boys, age: 14.0 ± 1.7 years) yielded 74 knees with patellar osteochondritis dissecans lesions, 14 (19%) of which were skeletally mature. The most common anatomic location was over the central patella [median ridge (34/74 − 46%) on the axial images and over the middle third (45/74 − 61%) on the sagittal images]. Overall, mean trochlear sulcus angle (high, 151 ± 11°), trochlear depth index (low, 2.8 ± 1.4 mm), and Insall-Salvati index (borderline, 1.3 ± 0.1) were abnormal for the entire sample. Skeletally mature knees were significantly more likely to have higher (more dysplastic) Dejour types when compared to skeletally immature knees (p < 0.01). Knees in the mature group, compared to immature, had significantly more abnormal mean lateral trochlear inclination (15 ± 8° vs. 19 ± 6°, p = 0.03) and patellar tendon-lateral trochlear ridge distance (5.55 ± 4.31 mm vs. 2.89 ± 4.69 mm, p = 0.04). Half of the knees had ≥ 4 abnormal features that predispose to patellofemoral maltracking; mature knees were significantly (p = 0.02) more likely to have a higher number of abnormal features (> 6 features, 7/14, 50.0%) versus immature knees (0–3 features, 33/60, 55.0%).

Conclusion

In children with patellar osteochondritis dissecans, abnormal patellofemoral morphology and alignment indices were common in all patients and more severe in mature knees.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Laor T, Zbojniewicz AM, Eismann EA, Wall EJ (2012) Juvenile osteochondritis dissecans: is it a growth disturbance of the secondary physis of the epiphysis? AJR American journal of roentgenology. 199(5):1121–1128

    Article  PubMed  Google Scholar 

  2. Ellermann J, Johnson CP, Wang L, et al (2017) Insights into the epiphyseal cartilage origin and subsequent osseous manifestation of juvenile osteochondritis dissecans with a modified clinical MR Imaging Protocol: a pilot study. Radiology 282(3):798–806

    Article  PubMed  Google Scholar 

  3. Nguyen JC, Markhardt BK, Merrow AC, Dwek JR (2017) Imaging of Pediatric Growth plate disturbances. Radiographics: Rev Publication Radiological Soc North Am Inc 37(6):1791–1812

    Article  Google Scholar 

  4. Krause M, Hapfelmeier A, Möller M, et al (2013) Healing predictors of stable juvenile osteochondritis dissecans knee lesions after 6 and 12 months of nonoperative treatment. Am J Sports Med 41(10):2384–2391

    Article  PubMed  Google Scholar 

  5. Edmonds EW, Polousky J (2013) A review of knowledge in osteochondritis dissecans: 123 years of minimal evolution from König to the ROCK study group. Clin Orthop Relat Res 471(4):1118–1126

    Article  PubMed  Google Scholar 

  6. Nguyen JC, Liu F, Blankenbaker DG, Woo KM, Kijowski R (2018) Juvenile Osteochondritis dissecans: cartilage T2 mapping of stable medial femoral condyle lesions. Radiology 288(2):536–543

    Article  PubMed  Google Scholar 

  7. Kessler JI, Nikizad H, Shea KG, Jacobs JC Jr. et al (2014) The demographics and epidemiology of osteochondritis dissecans of the knee in children and adolescents. Am J Sports Med 42(2):320–326

    Article  PubMed  Google Scholar 

  8. Cruz AI Jr., Shea KG, Ganley TJ (2016) Pediatric knee Osteochondritis dissecans lesions. Qld Gov Min J 47(4):763–775

    Google Scholar 

  9. Bruns J, Luessenhop S, Lehmann L (1999) Etiological aspects in osteochondritis dissecans patellae. Knee surgery, sports traumatology, arthroscopy. Official J ESSKA 7(6):356–359

    CAS  Google Scholar 

  10. Kazley JM, Banerjee S (2019) Classifications in brief: the Dejour classification of trochlear dysplasia. Clin Orthop Relat Res 477(10):2380–2386

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee surgery, sports traumatology, arthroscopy. Official J ESSKA 2(1):19–26

    CAS  Google Scholar 

  12. Askenberger M, Janarv PM, Finnbogason T, Arendt EA (2017) Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med 45(1):50–58

    Article  PubMed  Google Scholar 

  13. Carrillon Y, Abidi H, Dejour D, Fantino O et al (2000) Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology 216(2):582–585

    Article  CAS  PubMed  Google Scholar 

  14. Stepanovich M, Bomar JD, Pennock AT (2016) Are the current classifications and radiographic measurements for trochlear dysplasia appropriate in the skeletally immature patient? Orthop J Sports Med 4(10):2325967116669490

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mistovich RJ, Urwin JW, Fabricant PD, Lawrence JTR (2018) Patellar tendon-lateral trochlear ridge distance: a novel measurement of patellofemoral instability. Am J Sports Med 46(14):3400–3406

    Article  PubMed  Google Scholar 

  16. Balcarek P, Jung K, Frosch KH, Stürmer KM (2011) Value of the tibial tuberosity-trochlear groove distance in patellar instability in the young athlete. Am J Sports Med 39(8):1756–1761

    Article  PubMed  Google Scholar 

  17. Dickens AJ, Morrell NT, Doering A, Tandberg D, et al (2014) Tibial tubercle-trochlear groove distance: defining normal in a pediatric population. J bone Joint Surg Am Volume 96(4):318–324

    Article  Google Scholar 

  18. Seeley MA, Knesek M, Vanderhave KL (2013 Jul-Aug) Osteochondral injury after acute patellar dislocation in children and adolescents. J Pediatr Orthop 33(5):511–518

    Article  PubMed  Google Scholar 

  19. Henderson IJ, Lavigne P (2006) Periosteal autologous chondrocyte implantation for patellar chondral defect in patients with normal and abnormal patellar tracking. Knee 13(4):274–279

    Article  CAS  PubMed  Google Scholar 

  20. Edwards DH, Bentley G (1977) Osteochondritis dissecans patellae. J bone Joint Surg Br Volume 59(1):58–63

    Article  CAS  Google Scholar 

  21. Livesley PJ, Milligan GF (1992) Osteochondritis dissecans patellae. Is there a genetic predisposition? Int Orthop 16(2):126–129

    Article  CAS  PubMed  Google Scholar 

  22. Desai SS, Patel MR, Michelli LJ, et al (1987) Osteochondritis dissecans of the patella. J bone Joint Surg Br Volume 69(2):320–325

    Article  CAS  Google Scholar 

  23. Choi YS, Cohen NA, Potter HG, Mintz DN (2007) Magnetic resonance imaging in the evaluation of osteochondritis dissecans of the patella. Skeletal Radiol 36(10):929–935

    Article  PubMed  Google Scholar 

  24. Kramer DE, Yen YM, Simoni MK, et al (2015) Surgical management of osteochondritis dissecans lesions of the patella and trochlea in the pediatric and adolescent population. Am J Sports Med 43(3):654–662

    Article  PubMed  Google Scholar 

  25. Sreenivasan SA, Madhugiri VS, Sasidharan GM, Kumar RV (2016 Jan-Mar) Measuring glioma volumes: a comparison of linear measurement based formulae with the manual image segmentation technique. J Cancer Res Ther 12(1):161–168

    Article  CAS  PubMed  Google Scholar 

  26. Crewson PE (2005) Reader agreement studies. AJR Am J Roentgenol 184(5):1391–1397

    Article  PubMed  Google Scholar 

  27. Benchoufi M, Matzner-Lober E, Molinari N, Jannot AS, et al (2020) Interobserver agreement issues in radiology. Diagn Interv Imaging 101(10):639–641

    Article  CAS  PubMed  Google Scholar 

  28. Schwarz C, Blazina ME, Sisto DJ, Hirsh LC (1988) The results of operative treatment of osteochondritis dissecans of the patella. Am J Sports Med 16(5):522–529

    Article  CAS  PubMed  Google Scholar 

  29. Caton JH, Dejour D (2010) Tibial tubercle osteotomy in patello-femoral instability and in patellar height abnormality. Int Orthop 34(2):305–309

    Article  PubMed  PubMed Central  Google Scholar 

  30. Peters TA, McLean ID Osteochondritis dissecans of the patellofemoral joint. Am J Sports Med 2000 Jan-Feb ;28(1):63–67

    Article  CAS  PubMed  Google Scholar 

  31. Uozumi H, Sugita T, Aizawa T, et al (2009) Histologic findings and possible causes of osteochondritis dissecans of the knee. Am J Sports Med 37(10):2003–2008

    Article  PubMed  Google Scholar 

  32. Lazaro LE, Cross MB, Lorich DG (2014) Vascular anatomy of the patella: implications for total knee arthroplasty surgical approaches. Knee 21(3):655–660

    Article  PubMed  Google Scholar 

  33. Tsujimoto K, Kurosaka M, Yoshiya S, Mizuno K (2000 Spring) Radiographic and computed tomographic analysis of the position of the tibial tubercle in recurrent dislocation and subluxation of the patella. Am J Knee Surg 13(2):83–88

    CAS  PubMed  Google Scholar 

  34. Pace JL, Cheng C, Joseph SM, Solomito MJ (2020) Effect of trochlear dysplasia on commonly used radiographic parameters to assess patellar instability. Orthop J Sports Med 8(7):2325967120938760

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie C. Nguyen.

Ethics declarations

This manuscript has not been published and is not under consideration for publication elsewhere.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, J.C., Patel, V., Kiani, S.N. et al. Patellar osteochondritis dissecans: maturation-dependent patellofemoral joint characteristics. Pediatr Radiol 54, 977–987 (2024). https://doi.org/10.1007/s00247-024-05914-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-024-05914-8

Keywords

Navigation