Skip to main content
Log in

Pictorial review: challenges in distinguishing bilateral metaphyseal marrow abnormalities on magnetic resonance imaging

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The paediatric metaphysis is afflicted by a wide range of pathological processes as it is the most metabolically active and well-vascularised part of the developing skeleton. This review focuses on metaphyseal marrow signal change detected with magnetic resonance imaging, which is most often occult on radiographs. When bilateral, these imaging appearances frequently present a diagnostic quandary. This review assists the radiologist to confidently dismiss physiological signal change and confidently work through the differential diagnosis. This is achieved by illustrating a practical method of classifying signal change into four categories: physiological red marrow, red marrow reconversion, marrow infiltration, and oedema-like marrow signal intensity. In doing so, various pathological entities are reviewed along with imaging pearls and next-step investigations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Laor T, Jaramillo D (1993) Metaphyseal abnormalities in children: pathophysiology and radiologic appearance. AJR Am J Roentgenol 161:1029–1036

    Article  CAS  PubMed  Google Scholar 

  2. Chan BY, Gill KG, Rebsamen SL, Nguyen JC (2016) MR imaging of pediatric bone marrow. Radiographics 36:1911–1930

    Article  PubMed  Google Scholar 

  3. Zadig PK, von Brandis E, Flatø B et al (2022) Whole body magnetic resonance imaging in healthy children and adolescents: bone marrow appearances of the appendicular skeleton. Eur J Radiol 153:110365

    Article  PubMed  Google Scholar 

  4. Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250:28–38

    Article  PubMed  Google Scholar 

  5. Person A, Janitz E, Thapa M (2021) Pediatric bone marrow: normal and abnormal MRI appearance. Semin Roentgenol 56:325–337

    Article  PubMed  Google Scholar 

  6. Nguyen JC, Markhardt BK, Merrow AC, Dwek JR (2017) Imaging of pediatric growth plate disturbances. Radiographics 37:1791–1812

    Article  PubMed  Google Scholar 

  7. Augusto ACL, Goes PCK, Flores DV et al (2022) Imaging review of normal and abnormal skeletal maturation. Radiographics 42:861–879

    Article  PubMed  Google Scholar 

  8. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B (1998) Magnetic resonance imaging of the normal bone marrow. Skeletal Radiol 27:471–483

    Article  CAS  PubMed  Google Scholar 

  9. Małkiewicz A, Dziedzic M (2012) Bone marrow reconversion - imaging of physiological changes in bone marrow. Pol J Radiol 77:45–50

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fletcher BD (1997) Effects of pediatric cancer therapy on the musculoskeletal system. Pediatr Radiol 27:623–636

    Article  CAS  PubMed  Google Scholar 

  11. Ryan SP, Weinberger E, White KS et al (1995) MR imaging of bone marrow in children with osteosarcoma: effect of granulocyte colony-stimulating factor. AJR Am J Roentgenol 165:915–920

    Article  CAS  PubMed  Google Scholar 

  12. Altehoefer C, Bertz H, Ghanem NA, Langer M (2001) Extent and time course of morphological changes of bone marrow induced by granulocyte-colony stimulating factor as assessed by magnetic resonance imaging of healthy blood stem cell donors. J Magn Reson Imaging 14:141–146

    Article  CAS  PubMed  Google Scholar 

  13. Gu L, Madewell JE, Aslam R, Mujtaba B (2019) The effects of granulocyte colony-stimulating factor on MR images of bone marrow. Skeletal Radiol 48:209–218

    Article  PubMed  Google Scholar 

  14. Shellock FG, Morris E, Deutsch AL et al (1992) Hematopoietic bone marrow hyperplasia: high prevalence on MR images of the knee in asymptomatic marathon runners. AJR Am J Roentgenol 158:335–338

    Article  CAS  PubMed  Google Scholar 

  15. Disler DG, McCauley TR, Ratner LM et al (1997) In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol 169:1439–1447

    Article  CAS  PubMed  Google Scholar 

  16. Akman B, Ata Korkmaz HA, Sarı A (2019) Efficacy of chemical shift MRI for differentiating diffuse red bone marrow reconversion and hematological malignancies. Turk J Med Sci 49:644–652

    Article  PubMed  PubMed Central  Google Scholar 

  17. Winfeld M, Ahlawat S, Safdar N (2016) Utilization of chemical shift MRI in the diagnosis of disorders affecting pediatric bone marrow. Skeletal Radiol 45:1205–1212

    Article  PubMed  Google Scholar 

  18. Maraghelli D, Brandi ML, Matucci Cerinic M et al (2021) Edema-like marrow signal intensity: a narrative review with a pictorial essay. Skeletal Radiol 50:645–663

    Article  PubMed  Google Scholar 

  19. Chaturvedi A (2021) Pediatric skeletal diffusion-weighted magnetic resonance imaging, part 2: current and emerging applications. Pediatr Radiol 51:1575–1588

    Article  PubMed  Google Scholar 

  20. Khoo MM, Tyler PA, Saifuddin A, Padhani AR (2011) Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 40:665–681

    Article  PubMed  Google Scholar 

  21. Raissaki M, Demetriou S, Spanakis K et al (2017) Multifocal bone and bone marrow lesions in children - MRI findings. Pediatr Radiol 47:342–360

    Article  PubMed  Google Scholar 

  22. Zaveri J, La Q, Yarmish G et al (2014) More than just Langerhans cell histiocytosis: a radiological review of histiocytic disorders. Radiographics 34:2008–2024

    Article  PubMed  Google Scholar 

  23. Stull MA, Kransdorf MJ, Devaney KO (1992) Langerhans cell histiocytosis of bone. Radiographics 12:801–823

    Article  CAS  PubMed  Google Scholar 

  24. Gorbachova T, Amber I, Beckmann NM et al (2019) Nomenclature of subchondral nonneoplastic bone lesions. AJR Am J Roentgenol 213:963–982

    Article  PubMed  Google Scholar 

  25. Saifuddin A, Tyler P, Rajakulasingam R (2023) Imaging of bone marrow pitfalls with emphasis on MRI. Br J Radiol 96:20220063

    Article  PubMed  Google Scholar 

  26. Offiah AC (2006) Acute osteomyelitis, septic arthritis and discitis: differences between neonates and older children. Eur J Radiol 60:221–232

    Article  CAS  PubMed  Google Scholar 

  27. Browne LP, Guillerman RP, Orth RC et al (2012) Community-acquired staphylococcal musculoskeletal infection in infants and young children: necessity of contrast-enhanced MRI for the diagnosis of growth cartilage involvement. AJR Am J Roentgenol 198:194–199

    Article  PubMed  Google Scholar 

  28. Jaramillo D, Dormans JP, Delgado J et al (2017) Hematogenous osteomyelitis in infants and children: imaging of a changing disease. Radiology 283:629–643

    Article  PubMed  Google Scholar 

  29. Resnik R, Lockwood C, Moore T et al (2019) Creasy and Resnik’s maternal-fetal medicine: principles and practice, 8th edn. Elsevier, Philadelphia

    Google Scholar 

  30. Sebag GH (1998) Disorders of the hip. Magn Reson Imaging Clin N Am 6:627–641

    Article  CAS  PubMed  Google Scholar 

  31. Simpson WL, Hermann G, Balwani M (2014) Imaging of Gaucher disease. World J Radiol 26:657–668

    Article  Google Scholar 

  32. Skaggs DL, Kim SK, Greene NW et al (2001) Differentiation between bone infarction and acute osteomyelitis in children with sickle-cell disease with use of sequential radionuclide bone-marrow and bone scans. J Bone Joint Surg Am 83:1810–1813

    Article  CAS  PubMed  Google Scholar 

  33. Solomon N, Segaran N, Badawy M et al (2022) Manifestations of sickle cell disorder at abdominal and pelvic imaging. Radiographics 42:1103–1122

    Article  PubMed  Google Scholar 

  34. Khanna G, Sato TS, Ferguson P (2009) Imaging of chronic recurrent multifocal osteomyelitis. Radiographics 29:1159–1177

    Article  PubMed  Google Scholar 

  35. Mandell G, Contreras SJ, Conard K et al (1998) Bone scintigraphy in the detection of chronic recurrent multifocal osteomyelitis. J Nucl Med 39:1778–1783

    CAS  PubMed  Google Scholar 

  36. de Horatio LT, Casazza I, Savelli S et al (2015) Chronic recurrent multifocal osteomyelitis (CRMO): typical patterns of bone involvement on MRI with particular emphasis on whole body MRI (WBMRI). Pediatr Rheumatol. https://doi.org/10.1186/1546-0096-13-S1-P53

    Article  Google Scholar 

  37. Schaal MC, Gendler L, Ammann B et al (2021) Imaging in non-bacterial osteomyelitis in children and adolescents: diagnosis, differential diagnosis and follow-up-an educational review based on a literature survey and own clinical experiences. Insights Imaging. https://doi.org/10.1186/s13244-021-01059-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zulian F, Marigo E, Ardenti-Morini F et al (2021) Osteoperiostitis in children: proposal for a diagnostic algorithm. Eur J Pediatr 180:3229–3235

    Article  PubMed  PubMed Central  Google Scholar 

  39. Taddio A, Ferrara G, Insalaco A et al (2017) Dealing with chronic non-bacterial osteomyelitis: a practical approach. Pediatr Rheumatol Online J. https://doi.org/10.1186/s12969-017-0216-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Musa H, Ismail II, Abdul Rashid NH (2021) Paediatric scurvy: frequently misdiagnosed. Paediatr Int Child Health 41:158–161

    Article  PubMed  Google Scholar 

  41. Ganske A, Kolbe AB, Thomas K, Hull N (2021) Pediatric Scurvy MRI appearance. Radiol Case Rep 16:1148–1152

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chang CY, Rosenthal DI, Mitchell DM et al (2016) Imaging findings of metabolic bone disease. Radiographics 36:1871–1887

    Article  PubMed  Google Scholar 

  43. Abbas F, Ha LD, Sterns R, von Doenhoff L (2016) Reversible right heart failure in scurvy rediscovery of an old observation. Circ Heart Fail. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003497

    Article  PubMed  Google Scholar 

  44. Abe K, Kibe R, David K et al (2021) Reversible right-sided heart failure and pulmonary hypertension caused by scurvy in a 7-year-old boy with autism spectrum disorder and a review of the literature. Paediatr Int Child Health 25:1–5

    Google Scholar 

  45. Rethore S, Leblond P, Thebaud E et al (2011) Unusual presentation of scurvy mimicking a neuroblastoma. Arch Pediatr 18:37–40. French

    Article  CAS  PubMed  Google Scholar 

  46. Mannes I, Rothenbuhler A, Merzoug V et al (2022) Imaging patterns in pediatric hypophosphatasia. Pediatr Radiol 52:998–1006

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the essay conception and design. The first and revised drafts of the manuscript were written by S.B. and all authors commented and edited previous versions of the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Sean M Booth.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Booth, S.M., Kapadia, T.H., Tang, V. et al. Pictorial review: challenges in distinguishing bilateral metaphyseal marrow abnormalities on magnetic resonance imaging. Pediatr Radiol (2024). https://doi.org/10.1007/s00247-024-05896-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00247-024-05896-7

Keywords

Navigation