Skip to main content

Advertisement

Log in

Reversed cortico-medullary differentiation in the fetal and neonatal kidneys: an indicator of poor prognosis?

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Bilateral reversed cortico-medullary differentiation is rarely observed on fetal or neonatal renal ultrasound and is therefore a diagnostic challenge.

Objective

Our purpose was to widen the differential diagnoses of fetal and neonatal nephropathies introducing reversed cortico-medullary differentiation as a clue either on obstetric US or during follow-up of hyperechoic kidneys in order to improve the management of such rare clinical situations.

Materials and methods

We retrospectively reviewed the US images of 11 patients showing bilateral reversed cortico-medullary differentiation on prenatal examination or in which this pattern developed postnatally in the follow-up of fetal hyperechoic kidneys. For each patient, a precise diagnosis was established either on clinical assessment or, when available, on histological or genetic findings.

Results

Six fetuses displayed bilateral reversed cortico-medullary differentiation on obstetric examination, and the pattern persisted throughout pregnancy. In the five other fetuses, the kidneys appeared initially homogeneously hyperechoic; this evolved into reversed cortico-medullary differentiation during the third trimester in two cases and shortly after birth in three cases. Two pregnancies were terminated because of estimated poor prognosis. In the nine surviving neonates, four died of renal failure in the post-natal period. The clinical evolution was more favorable in the remaining five newborns.

Conclusions

Six different diagnoses were established in patients presenting with a reversed cortico-medullary differentiation renal pattern. This finding was associated with poor outcome in six cases. An acute prenatal diagnosis of reversed cortico-medullary differentiation improves pre- and postnatal work-up and guides counseling and genetic testing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chitty LS, Altman DG (2003) Charts of fetal size: kidney and renal pelvis measurements. Prenat Diagn 23:891–897

    Article  PubMed  Google Scholar 

  2. Devriendt A, Cassart M, Massez A et al (2013) Fetal kidneys: additional sonographic criteria of normal development. Prenat Diagn 33:1248–1252

    Article  PubMed  Google Scholar 

  3. Cassart M (2023) Fetal uropathies: pre- and postnatal imaging, management and follow-up. Pediatr Radiol 53:610–620

    Article  PubMed  Google Scholar 

  4. Chaumoitre K, Brun M, Cassart M et al (2006) Differential diagnosis of fetal hyperechogenic cystic kidneys unrelated to renal tract anomalies: a multicenter study. Ultrasound Obstet Gynecol 28:911–917

    Article  CAS  PubMed  Google Scholar 

  5. Avni FE, Garel C, Cassart M et al (2012) Imaging and classification of congenital cystic renal diseases. AJR Am J Roentgenol 198:1004–1013

    Article  PubMed  Google Scholar 

  6. Decramer S, Parant O, Beaufils S et al (2007) Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol 18:923–933

    Article  CAS  PubMed  Google Scholar 

  7. Hershkovitz R, Amichay K, Stein GY et al (2011) The echogenicity of the normal fetal kidneys during different stages of pregnancy determined objectively. Arch Gynecol Obstet 284:807–811

    Article  PubMed  Google Scholar 

  8. Shuster S, Keunen J, Shannon P et al (2019) Prenatal detection of isolated bilateral hyperechogenic kidneys: Etiologies and outcomes. Prenat Diagn 39:693–700

    Article  CAS  PubMed  Google Scholar 

  9. Tsatsaris V, Gagnadoux MF, Aubry MC et al (2002) Prenatal diagnosis of bilateral isolated fetal hyperechogenic kidneys. Is it possible to predict long term outcome? BJOG 109:1388–1393

    Article  CAS  PubMed  Google Scholar 

  10. Daneman A, Navarro OM, Somers GR et al (2010) Renal pyramids: focused sonography of normal and pathologic processes. Radiographics 30:1287–1307

    Article  PubMed  Google Scholar 

  11. Erger F, Bruchle NO, Gembruch U et al (2017) Prenatal ultrasound, genotype, and outcome in a large cohort of prenatally affected patients with autosomal-recessive polycystic kidney disease and other hereditary cystic kidney diseases. Arch Gynecol Obstet 295:897–906

    Article  PubMed  Google Scholar 

  12. Santolaya J, Farolan M, Czapar J et al (1994) Clinical and pathologic findings in 2 siblings with congenital nephrotic syndrome. Fetal Diagn Ther 9:170–174

    Article  CAS  PubMed  Google Scholar 

  13. Wang JJ, Mao JH (2016) The etiology of congenital nephrotic syndrome: current status and challenges. World J Pediatr 12:149–158

    Article  PubMed  Google Scholar 

  14. Zenker M, Tralau T, Lennert T et al (2004) Congenital nephrosis, mesangial sclerosis, and distinct eye abnormalities with microcoria: an autosomal recessive syndrome. Am J Med Genet A 130A:138–145

    Article  PubMed  Google Scholar 

  15. Hureaux M, Molin A, Jay N et al (2018) Prenatal hyperechogenic kidneys in three cases of infantile hypercalcemia associated with SLC34A1 mutations. Pediatr Nephrol 33:1723–1729

    Article  PubMed  Google Scholar 

  16. Pronicka E, Ciara E, Halat P et al (2017) Biallelic mutations in CYP24A1 or SLC34A1 as a cause of infantile idiopathic hypercalcemia (IIH) with vitamin D hypersensitivity: molecular study of 11 historical IIH cases. J Appl Genet 58:349–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schlingmann KP, Ruminska J, Kaufmann M et al (2016) Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol 27:604–614

    Article  CAS  PubMed  Google Scholar 

  18. Servais A, Thomas K, Dello Strologo L et al (2021) Cystinuria: clinical practice recommendation. Kidney Int 99:48–58

    Article  CAS  PubMed  Google Scholar 

  19. Tostivint I, Royer N, Nicolas M et al (2017) Spectrum of mutations in cystinuria patients presenting with prenatal hyperechoic colon. Clin Genet 92:632–638

    Article  CAS  PubMed  Google Scholar 

  20. Bergmann C (2015) ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr Nephrol 30:15–30

    Article  PubMed  Google Scholar 

  21. Bergmann C (2017) Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr 5:221

    Article  PubMed  Google Scholar 

  22. Traubici J, Daneman A (2005) High-resolution renal sonography in children with autosomal recessive polycystic kidney disease. AJR Am J Roentgenol 184:1630–1633

    Article  PubMed  Google Scholar 

  23. Castro-Sanchez S, Alvarez-Satta M, Valverde D (2013) Bardet-Biedl syndrome: a rare genetic disease. J Pediatr Genet 2:77–83

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dippell J, Varlam DE (1998) Early sonographic aspects of kidney morphology in Bardet-Biedl syndrome. Pediatr Nephrol 12:559–563

    Article  CAS  PubMed  Google Scholar 

  25. Goldman M, Shuman C, Weksberg R et al (2003) Hypercalciuria in Beckwith-Wiedemann syndrome. J Pediatr 142:206–208

    Article  PubMed  Google Scholar 

  26. Goldman M, Smith A, Shuman C et al (2002) Renal abnormalities in Beckwith-Wiedemann syndrome are associated with 11p15.5 uniparental disomy. J Am Soc Nephrol 13:2077–2084

    Article  CAS  PubMed  Google Scholar 

  27. Kumar N, S Agarwal, V Das et al (2016) Prenatal sonographic diagnosis of Beckwith-Wiedemann syndrome in a fetus with omphalocoele. BMJ Case Rep 2016. https://doi.org/10.1136/bcr-2016-217993

  28. Mark K, Reis A, Zenker M (2006) Prenatal findings in four consecutive pregnancies with fetal Pierson syndrome, a newly defined congenital nephrosis syndrome. Prenat Diagn 26:262–266

    Article  PubMed  Google Scholar 

  29. Cassart M, Eurin D, Didier F et al (2004) Antenatal renal sonographic anomalies and postnatal follow-up of renal involvement in Bardet-Biedl syndrome. Ultrasound Obstet Gynecol 24:51–54

    Article  CAS  PubMed  Google Scholar 

  30. Forsythe E, Kenny J, Bacchelli C et al (2018) Managing Bardet-Biedl syndrome-now and in the future. Front Pediatr 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  31. Priya S, Nampoothiri S, Sen P et al (2016) Bardet-Biedl syndrome: genetics, molecular pathophysiology, and disease management. Indian J Ophthalmol 64:620–627

    Article  PubMed  PubMed Central  Google Scholar 

  32. Clissold RL, Hamilton AJ, Hattersley AT et al (2015) HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat Rev Nephrol 11:102–112

    Article  CAS  PubMed  Google Scholar 

  33. Amat S, Czerkiewicz I, Benoist JF et al (2011) Isolated hyperechoic fetal colon before 36 weeks’ gestation reveals cystinuria. Ultrasound Obstet Gynecol 38:543–547

    Article  CAS  PubMed  Google Scholar 

  34. Brasseur-Daudruy M, Garel C, Brossard V et al (2006) Hyper-echogenic colon: a prenatal sign of cystinuria? Prenat Diagn 26:1254–1255

    Article  CAS  PubMed  Google Scholar 

  35. Cobo Costa A, Luis Yanes MI, Padilla Perez AI et al (2011) Foetal hyper-echogenic colon as an early sign of cystinuria. Nefrologia 31:123–124

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept for the article: E.F.A. Interpretation of the images: MC, CG, EF.A.;  Literature search, collecting data, analysis and writing: M.C., C.G., E.F.A.; Draft preparation and revision: M.C., C.G., T.U., E.F.A.

Corresponding author

Correspondence to Marie Cassart.

Ethics declarations

Ethical approval

Institutional Review Board approval was not required because it is an observational study. Data were collected according the institutions’ ethical requirements.

Informed consent

Written informed consent was not required for this study because it corresponds to a retrospective observational study; images were anonymized for review.

Conflicts of interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassart, M., Garel, C., Ulinski, T. et al. Reversed cortico-medullary differentiation in the fetal and neonatal kidneys: an indicator of poor prognosis?. Pediatr Radiol 54, 285–292 (2024). https://doi.org/10.1007/s00247-023-05833-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-023-05833-0

Keywords

Navigation