Skip to main content

Advertisement

Log in

Ultrasound versus magnetic resonance imaging of soft-tissue lesions: competitive or complementary?

  • Minisymposium: Small parts and musculoskeletal ultrasound
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Soft-tissue lumps and bumps are a common referral for imaging in children and adolescents. The etiology of these lesions includes benign non-tumorous lesions, as well as benign and malignant tumors. Some of these lesions have a characteristic imaging appearance but others do not and require tissue sampling to make a diagnosis. MRI typically provides the best overall characterization of soft-tissue masses; however, in some cases US provides complementary information to that provided by MRI that can help make a diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shah SH, Callahan MJ (2013) Ultrasound evaluation of superficial lumps and bumps of the extremities in children: a 5-year retrospective review. Pediatr Radiol 43:S23–S40

    Article  Google Scholar 

  2. Kim HW, Yoo SY, Oh S et al (2020) Ultrasonography of pediatric superficial soft tissue tumors and tumor-like lesions. Korean J Radiol 21:341–355

    Article  Google Scholar 

  3. Kransdorf MJ, Murphey MD, Wessell DE et al (2018) ACR appropriateness criteria: soft-tissue masses. J Am Coll Radiol 15:S189–S197

    Article  Google Scholar 

  4. Elias DA, White LM, Simpson DJ et al (2003) Osseous invasion by soft-tissue sarcoma: assessment with MR imaging. Radiology 229:145–152

    Article  Google Scholar 

  5. Holzapfel K, Regler J, Baum T et al (2015) Local staging of soft-tissue sarcoma: emphasis on assessment of neurovascular encasement — value of MR imaging in 174 confirmed cases. Radiology 275:501–509

    Article  Google Scholar 

  6. Rozenfeld MN, Podberesky DJ (2018) Gadolinium-based contrast agents in children. Pediatr Radiol 48:1188–1196

    Article  Google Scholar 

  7. Gartner L, Pearce CJ, Saifuddin A (2009) The role of the plain radiograph in the characterisation of soft tissue tumours. Skelet Radiol 38:549–558

    Article  Google Scholar 

  8. Lakkaraju A, Sinha R, Garikipati R et al (2009) Ultrasound for initial evaluation and triage of clinically suspicious soft-tissue masses. Clin Radiol 64:615–621

    Article  CAS  Google Scholar 

  9. Hung EHY, Griffith JF, Ng AWH et al (2014) Ultrasound of musculoskeletal soft-tissue tumors superficial to the investing fascia. AJR Am J Roentgenol 202:W532–W540

    Article  Google Scholar 

  10. Hung EHY, Griffith JF, Yip SWY et al (2020) Accuracy of ultrasound in the characterization of superficial soft tissue tumors: a prospective study. Skelet Radiol 49:883–892

    Article  Google Scholar 

  11. Bui-Mansfield LT, Chen DC, O’Brien SD (2015) Accuracy of ultrasound of musculoskeletal soft-tissue tumors. AJR Am J Roentgenol 204:W218

    Article  Google Scholar 

  12. Mellado JM, Pérez del Palomar L (1999) Muscle hernias of the lower leg: MRI findings. Skelet Radiol 28:465–469

    Article  CAS  Google Scholar 

  13. Zhou X, Zhan W, Chen W et al (2017) The value of ultrasound in the preoperative diagnosis of muscle herniation: a comparison with magnetic resonance imaging. Eur J Radiol 94:191–194

    Article  Google Scholar 

  14. Hullur H, Salem Y, Al Khalifa J, Salem A (2016) Tibialis anterior muscle hernia: rare but not uncommon. BMJ Case Rep 2016:bcr2016217569

  15. Kramer DE, Pace JL, Jarrett DY et al (2013) Diagnosis and management of symptomatic muscle herniation of the extremities: a retrospective review. Am J Sports Med 41:2174–2180

    Article  Google Scholar 

  16. Braunstein JT, Crues JV (1995) Magnetic resonance imaging of hereditary hernias of the peroneus longus muscle. Skelet Radiol 24:601–604

    Article  CAS  Google Scholar 

  17. Zeiss J, Ebraheim NA, Woldenberg LS (1989) Magnetic resonance imaging in the diagnosis of anterior tibialis muscle herniation. Clin Orthop Relat Res 1989:249–253

  18. Jarrett DY, Kramer DE, Callahan MJ, Kleinman PK (2013) US diagnosis of pediatric muscle hernias of the lower extremities. Pediatr Radiol 43:S2–S7

    Article  Google Scholar 

  19. Saad NEA, Saad WEA, Davies MG et al (2005) Pseudoaneurysms and the role of minimally invasive techniques in their management. Radiographics 25:S173–S189

    Article  Google Scholar 

  20. Anderson SE, De Monaco D, Buechler U et al (2003) Imaging features of pseudoaneurysms of the hand in children and adults. AJR Am J Roentgenol 180:659–664

    Article  CAS  Google Scholar 

  21. Albert S, Daniel S, Gouse M, Cherian VM (2015) Case of pseudoaneurysm mimicking a soft tissue sarcoma: a diagnostic pitfall. Malays J Med Sci 22:61–64

    PubMed  PubMed Central  Google Scholar 

  22. Byregowda S, Puri A, Gulia A et al (2016) Pseudoaneurysms masquerading as malignant bone tumours. J Clin Diagn Res 10:XD03–XD05

  23. WHO Classification of Tumors Editorial Board (2020) WHO classification of tumors: soft tissue and bone tumors, 5th edn. International Agency for Research on Cancer, Lyon Cedex

    Google Scholar 

  24. Michal M, Fanburg-Smith JC, Lasota J et al (2006) Minute synovial sarcomas of the hands and feet: a clinicopathologic study of 21 tumors less than 1 cm. Am J Surg Pathol 30:721–726

    Article  Google Scholar 

  25. Kransdorf MJ, Murphey MD (2006) Imaging of soft tissue tumors. In: Kransdorf MJ, Murphey MD (eds) Imaging of soft tissue tumors, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 424–433

    Google Scholar 

  26. Crosby SN, Alamanda VK, Weikert DR, Holt GE (2013) Avoiding unplanned resections of wrist sarcomas: an algorithm for evaluating dorsal wrist masses. Am J Orthop 42:401–406

    PubMed  Google Scholar 

  27. Albanese G, Mohandas P, Wells L et al (2019) Orbital infantile haemangioma: radiological features and treatment — case series and literature review. Orbit 38:67–71

    Article  Google Scholar 

  28. Kralik SF, Haider KM, Lobo RR et al (2018) Orbital infantile hemangioma and rhabdomyosarcoma in children: differentiation using diffusion-weighted magnetic resonance imaging. J AAPOS 22:27–31

    Article  Google Scholar 

  29. Saito M, Kitami M, Takase K (2019) Usefulness of diffusion-weighted magnetic resonance imaging using apparent diffusion coefficient values for diagnosis of infantile hemangioma. J Comput Assist Tomogr 43:563–567

    Article  Google Scholar 

  30. Sleep TJ, Fairhurst JJ, Manners RM, Hodgkins PR (2002) Doppler ultrasonography to aid diagnosis of orbital capillary haemangioma in neonates. Eye 16:316–319

    Article  CAS  Google Scholar 

  31. Spierer O, Neudorfer M, Leibovitch I et al (2012) Colour Doppler ultrasound imaging findings in paediatric periocular and orbital haemangiomas. Acta Ophthalmol 90:727–732

    Article  Google Scholar 

  32. Ke Y, Hao R, He Y et al (2014) The value of color Doppler imaging and intralesional steroid injection in pediatric orbital capillary hemangioma. J Chin Med Assoc 77:258–264

    Article  Google Scholar 

  33. Davis J, Czerniski B, Au A et al (2015) Diagnostic accuracy of ultrasonography in retained soft tissue foreign bodies: a systematic review and meta-analysis. Acad Emerg Med 22:777–787

    Article  Google Scholar 

  34. Nienaber A, Harvey M, Cave G (2010) Accuracy of bedside ultrasound for the detection of soft tissue foreign bodies by emergency doctors. Emerg Med Australas 22:30–34

    PubMed  Google Scholar 

  35. Crystal CS, Masneri DA, Hellums JS et al (2009) Bedside ultrasound for the detection of soft tissue foreign bodies: a cadaveric study. J Emerg Med 36:377–380

    Article  Google Scholar 

  36. Gorbachova T, Chang EY, Ha AS et al (2020) ACR appropriateness criteria: acute trauma to the foot. J Am Coll Radiol 17:S2–S11

    Article  Google Scholar 

  37. Nakamura T, Kusuzaki K, Matsubara T et al (2008) Foreign-body granulomas in the trunk and extremities may simulate malignant soft-tissue tumors: report of three cases. Acta Radiol 49:80–83

    Article  CAS  Google Scholar 

  38. Ando A, Hatori M, Hagiwara Y et al (2009) Imaging features of foreign body granuloma in the lower extremities mimicking a soft tissue neoplasm. Ups J Med Sci 114:46–51

    Article  Google Scholar 

  39. Monu JU, McManus CM, Ward WG et al (1995) Soft-tissue masses caused by long-standing foreign bodies in the extremities: MR imaging findings. AJR Am J Roentgenol 165:395–397

    Article  CAS  Google Scholar 

  40. Maempel JF, Nicol G, Clement RGE, Porter D (2013) A foreign body masquerading as a tumour. BMJ case rep 2013:bcr2012007473

  41. Nazarian LN (2008) The top 10 reasons musculoskeletal sonography is an important complementary or alternative technique to MRI. AJR Am J Roentgenol 190:1621–1626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur B. Meyers.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Online Supplementary Material 1

In the same 12-year-old boy as in Fig. 1 (case 1), transverse gray-scale US cine clip through the leg area while the boy is performing the provocative maneuver (squatting) shows the muscle herniating through the investing facia. Compare with images (c) and (d) in Fig. 1 (GIF 16172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyers, A.B., Epelman, M. Ultrasound versus magnetic resonance imaging of soft-tissue lesions: competitive or complementary?. Pediatr Radiol 52, 1639–1647 (2022). https://doi.org/10.1007/s00247-021-05274-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05274-7

Keywords

Navigation