Skip to main content
Log in

Liver magnetic resonance imaging: how we do it

  • Pediatric Body MRI
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging is used for evaluating focal liver lesions, hepatic vascular diseases, biliary diseases and diffuse liver diseases in children. MRI examinations take a long time, often requiring sedation or anesthesia in smaller children. This makes it essential to understand the concepts and technique necessary to obtain an optimal examination for answering the clinical question while minimizing the need for sedation/anesthesia. We discuss key concepts including appropriate sequence selection, choice of contrast media, dynamic imaging, phases of contrast enhancement and protocol organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chavhan GB, Shelmerdine S, Jhaveri K, Babyn PS (2016) Liver MR imaging in children: current concepts and technique. Radiographics 36:1517–1532

    Article  Google Scholar 

  2. Piñeiro-Carrero VM, Piñeiro EO (2004) Liver. Pediatrics 113:1097–1106

    Article  Google Scholar 

  3. Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719

    Article  Google Scholar 

  4. Cittadini G, Santacroce E, Giasotto V, Rescinito G (2004) Focal liver lesions: characterization with quantitative analysis of T2 relaxation time in TSE sequence with double echo time. Radiol Med 107:166–173

    PubMed  Google Scholar 

  5. Cieszanowski A, Szeszkowski W, Golebiowski M et al (2002) Discrimination of benign from malignant hepatic lesions based on their T2-relaxation times calculated from moderately T2-weighted turbo SE sequence. Eur Radiol 12:2273–2279

    Article  Google Scholar 

  6. Caro-Domínguez P, Gupta AA, Chavhan GB (2018) Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors? Pediatr Radiol 48:85–93

    Article  Google Scholar 

  7. Grasparil ADI, Gupta H, Sheybani E, Chavhan GB (2019) Low b-value (50–100) diffusion-weighted images detect significantly more hyperintense liver lesions in children than T2-weighted images. Pediatr Radiol 49:1299–1305

    Article  Google Scholar 

  8. Gandhi SN, Brown MA, Wong JG et al (2006) MR contrast agents for liver imaging: what, when, how. Radiographics 26:1621–1636

    Article  Google Scholar 

  9. Seale MK, Catalano OA, Saini S et al (2009) Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree. Radiographics 29:1725–1748

    Article  Google Scholar 

  10. Schneider G, Schürholz H, Kirchin MA et al (2013) Safety and adverse effects during 24 hours after contrast-enhanced MRI with gadobenate dimeglumine (MultiHance) in children. Pediatr Radiol 43:202–211

    Article  Google Scholar 

  11. Geller J, Kasahara M, Martinez M et al (2016) Safety and efficacy of gadoxetate disodium-enhanced liver MRI in pediatric patients aged >2 months to <18 years — results of a retrospective, multicenter study. Magn Reson Insights 9:21–28

    PubMed  PubMed Central  Google Scholar 

  12. Kitao A, Zen Y, Matsui O et al (2010) Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR imaging — correlation with molecular transporters and histopathologic features. Radiology 256:817–826

    Article  Google Scholar 

  13. Yoneda N, Matsui O, Kitao A et al (2012) Hepatocyte transporter expression in FNH and FNH-like nodule: correlation with signal intensity on gadoxetic acid enhanced magnetic resonance images. Jpn J Radiol 30:499–508

    Article  CAS  Google Scholar 

  14. Fujiwara H, Sekine S, Onaya H et al (2011) Ring-like enhancement of focal nodular hyperplasia with hepatobiliary-phase Gd-EOB-DTPA-enhanced magnetic resonance imaging: radiological–pathological correlation. Jpn J Radiol 29:739–743

    Article  Google Scholar 

  15. Agarwal S, Fuentes-Orrego JM, Arnason T et al (2014) Inflammatory hepatocellular adenomas can mimic focal nodular hyperplasia on gadoxetic acid-enhanced MRI. AJR Am J Roentgenol 203:W408–W414

    Article  Google Scholar 

  16. Kitao A, Matsui O, Yoneda N et al (2015) Hepatocellular carcinoma with β-catenin mutation: imaging and pathologic characteristics. Radiology 275:708–717

    Article  Google Scholar 

  17. Kitao A, Matsui O, Yoneda N et al (2018) Gadoxetic acid-enhanced magnetic resonance imaging reflects co-activation of β-catenin and hepatocyte nuclear factor 4α in hepatocellular carcinoma. Hepatol Res 48:205–216

    Article  CAS  Google Scholar 

  18. Yamashita T, Kitao A, Matsui O et al (2014) Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology 60:1674–1685

    Article  CAS  Google Scholar 

  19. Fujita N, Nishie A, Asayama Y et al (2020) Hyperintense liver masses at hepatobiliary phase gadoxetic acid-enhanced MRI: imaging appearances and clinical importance. Radiographics 40:72–94

    Article  Google Scholar 

  20. Lee YJ, Lee JM, Lee JS et al (2015) Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging — a systematic review and meta-analysis. Radiology 275:97–109

    Article  Google Scholar 

  21. Kolbe AB, Podberesky DJ, Zhang B, Towbin AJ (2015) The impact of hepatocyte phase imaging from infancy to young adulthood in patients with a known or suspected liver lesion. Pediatr Radiol 45:354–365

    Article  Google Scholar 

  22. Grazioli L, Bondioni MP, Haradome H et al (2012) Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology 262:520–529

    Article  Google Scholar 

  23. Park YS, Lee CH, Kim JW et al (2016) Differentiation of hepatocellular carcinoma from its various mimickers in liver magnetic resonance imaging: what are the tips when using hepatocyte-specific agents? World J Gastroenterol 22:284–299

    Article  CAS  Google Scholar 

  24. Lanier H, Wallace A, Khanna G (2020) Rate of gadoxetate disodium (Eovist®) induced transient respiratory motion in children and young adults. Abdom Radiol 45:101–106

    Article  Google Scholar 

  25. Gilligan LA, Trout AT, Anton CG et al (2019) Respiratory motion in children and young adults undergoing liver magnetic resonance imaging with intravenous gadoxetate disodium contrast material. Pediatr Radiol 49:1171–1176

    Article  Google Scholar 

  26. Jhaveri K, Cleary S, Audet P et al (2015) Consensus statements from a multidisciplinary expert panel on the utilization and application of a liver-specific MRI contrast agent (gadoxetic acid). AJR Am J Roentgenol 204:498–509

    Article  Google Scholar 

  27. Doo KW, Lee CH, Choi JW et al (2009) "Pseudo washout" sign in high-flow hepatic hemangioma on gadoxetic acid contrast-enhanced MRI mimicking hypervascular tumor. AJR Am J Roentgenol 193:W490–W496

    Article  Google Scholar 

  28. Blumfield E, Moore MM, Drake MK et al (2017) Survey of gadolinium-based contrast agent utilization among the members of the Society for Pediatric Radiology: a quality and safety committee report. Pediatr Radiol 47:665–673

    Article  Google Scholar 

  29. Chavhan GB, Mann E, Kamath BM, Babyn PS (2014) Gadobenate-dimeglumine-enhanced magnetic resonance imaging for hepatic lesions in children. Pediatr Radiol 44:1266–1274

    Article  Google Scholar 

  30. Schooler GR, Squires JH, Alazraki A et al (2020) Pediatric hepatoblastoma, hepatocellular carcinoma, and other hepatic neoplasms: consensus imaging recommendations from American College of Radiology Pediatric Liver Reporting and Data System (LI-RADS) working group. Radiology 296:493–497

    Article  Google Scholar 

  31. American College of Radiology (2018) CT/MRI LI-RADS v2018. ACR website. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS/CT-MRI-LI-RADS-v2018. Accessed 15 April 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailish C. Coblentz.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavhan, G.B., Farras Roca, L. & Coblentz, A.C. Liver magnetic resonance imaging: how we do it. Pediatr Radiol 52, 167–176 (2022). https://doi.org/10.1007/s00247-021-05053-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05053-4

Keywords

Navigation