Skip to main content

Advertisement

Log in

Contrast-enhanced ultrasound in pediatric interventional radiology

  • Contrast-enhanced ultrasound (CEUS) in children
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

There is growing interest in the use of contrast-enhanced ultrasound (CEUS) in diagnostic and interventional radiology. CEUS applications in interventional radiology are performed with intravascular or intracavitary administration of microbubble-based US contrast agents to allow for real-time evaluation of their distribution within the vascular bed or in body cavities, respectively, providing additional information beyond gray-scale US alone. The most common interventional-radiology-related CEUS applications in children have been extrapolated from those in adults, and they include the use of CEUS to guide lesion biopsy and to confirm drain placement in pleural effusions and intra-abdominal fluid collections. Other applications are emerging in interventional radiology for use in adults and children, including CEUS to optimize sclerotherapy of vascular malformations, to guide arthrography, and for lymphatic interventions. In this review article we present a wide range of interventional-radiology-related CEUS applications, emphasizing the current and potential uses in children. We highlight the technical parameters of the CEUS examination and discuss the main imaging findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Raymond-Martimbeau P (2009) Transient adverse events positively associated with patent foramen ovale after ultrasound-guided foam sclerotherapy. Phlebology 24:114–119

    Article  PubMed  Google Scholar 

  2. Wen M, Stock K, Heemann U et al (2014) Agitated saline bubble-enhanced transthoracic echocardiography: a novel method to visualize the position of central venous catheter. Crit Care Med 42:e231–e233

    Article  PubMed  Google Scholar 

  3. Nolsoe CP, Nolsoe AB, Klubien J et al (2018) Use of ultrasound contrast agents in relation to percutaneous interventional procedures: a systematic review and pictorial essay. J Ultrasound Med 37:1305–1324

    Article  PubMed  Google Scholar 

  4. Sparchez Z, Radu P, Zaharia T et al (2011) Usefulness of contrast enhanced ultrasound guidance in percutaneous biopsies of liver tumors. J Gastrointestin Liver Dis 20:191–196

    PubMed  Google Scholar 

  5. Yoon SH, Lee KH, Kim SY et al (2010) Real-time contrast-enhanced ultrasound-guided biopsy of focal hepatic lesions not localised on B-mode ultrasound. Eur Radiol 20:2047–2056

    Article  PubMed  Google Scholar 

  6. Sparchez Z, Radu P, Zaharia T et al (2010) Contrast enhanced ultrasound guidance: a new tool to improve accuracy in percutaneous biopsies. Med Ultrason 12:133–138

    PubMed  Google Scholar 

  7. Huang DY, Yusuf GT, Daneshi M et al (2018) Contrast-enhanced ultrasound (CEUS) in abdominal intervention. Abdom Radiol 43:960–976

    Google Scholar 

  8. Gummadi S, Eisenbrey JR, Lyshchik A (2018) Contrast-enhanced ultrasonography in interventional oncology. Abdom Radiol 43:3166–3175

    Article  Google Scholar 

  9. Huang DY, Yusuf GT, Daneshi M et al (2017) Contrast-enhanced US-guided interventions: improving success rate and avoiding complications using US contrast agents. Radiographics 37:652–664

    Article  PubMed  Google Scholar 

  10. Kessner R, Nakamoto DA, Kondray V et al (2019) Contrast-enhanced ultrasound guidance for interventional procedures. J Ultrasound Med 38:2541–2557

    Article  PubMed  Google Scholar 

  11. Lorentzen T, Nolsoe CP, Ewertsen C et al (2015) EFSUMB guidelines on interventional ultrasound (INVUS), Part I. General aspects (short version). Ultraschall Med 36:464–472

  12. Daneshi M, Yusuf GT, Fang C et al (2019) Contrast-enhanced ultrasound (CEUS) nephrostogram: utility and accuracy as an alternative to fluoroscopic imaging of the urinary tract. Clin Radiol 74:167.e9–167.e16

    Article  CAS  Google Scholar 

  13. Yusuf GT, Fang C, Huang DY et al (2018) Endocavitary contrast enhanced ultrasound (CEUS): a novel problem solving technique. Insights Imaging 9:303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muller T, Blank W, Leitlein J et al (2015) Endocavitary contrast-enhanced ultrasound: a technique whose time has come? J Clin Ultrasound 43:71–80

    Article  PubMed  Google Scholar 

  15. Kljucevsek D, Riccabona M, Ording Muller LS et al (2020) Intracavitary contrast-enhanced ultrasonography in children: review with procedural recommendations and clinical applications from the European Society of Paediatric Radiology abdominal imaging task force. Pediatr Radiol 50:596–606

    Article  PubMed  Google Scholar 

  16. Nadolski GJ, Ponce-Dorrego MD, Darge K et al (2018) Validation of the position of injection needles with contrast-enhanced ultrasound for dynamic contract-enhanced MR lymphangiography. J Vasc Interv Radiol 29:1028–1030

    Article  PubMed  Google Scholar 

  17. Yusuf GT, Sellars ME, Deganello A et al (2017) Retrospective analysis of the safety and cost implications of pediatric contrast-enhanced ultrasound at a single center. AJR Am J Roentgenol 208:446–452

    Article  PubMed  Google Scholar 

  18. Quaia E, Gennari AG, Angileri R et al (2016) Bolus versus continuous infusion of microbubble contrast agent for liver ultrasound by using an automatic power injector in humans: a pilot study. J Clin Ultrasound 44:136–142

    Article  PubMed  Google Scholar 

  19. Goddi A, Novario R, Tanzi F et al (2004) In vitro analysis of ultrasound second generation contrast agent diluted in saline solution. Radiol Med 107:569–579

    PubMed  Google Scholar 

  20. Popescu A, Sporea I, Sirli R et al (2015) Does contrast enhanced ultrasound improve the management of liver abscesses? A single centre experience. Med Ultrason 17:451–455

  21. Kosloske AM, Love CL, Rohrer JE et al (2004) The diagnosis of appendicitis in children: outcomes of a strategy based on pediatric surgical evaluation. Pediatrics 113:29–34

    Article  PubMed  Google Scholar 

  22. Smink DS, Finkelstein JA, Garcia Pena BM et al (2004) Diagnosis of acute appendicitis in children using a clinical practice guideline. J Pediatr Surg 39:458–463

    Article  PubMed  Google Scholar 

  23. Tracy MC, Mathew R (2018) Complicated pneumonia: current concepts and state of the art. Curr Opin Pediatr 30:384–392

    Article  PubMed  Google Scholar 

  24. Deganello A, Rafailidis V, Sellars ME et al (2017) Intravenous and intracavitary use of contrast-enhanced ultrasound in the evaluation and management of complicated pediatric pneumonia. J Ultrasound Med 36:1943–1954

    Article  PubMed  Google Scholar 

  25. Mao F, Dong Y, Ji Z et al (2017) Contrast-enhanced ultrasound guided biopsy of undetermined abdominal lesions: a multidisciplinary decision-making approach. Biomed Res Int 2017:8791259

    PubMed  PubMed Central  Google Scholar 

  26. Dong Y, Mao F, Wang WP et al (2015) Value of contrast-enhanced ultrasound in guidance of percutaneous biopsy in peripheral pulmonary lesions. Biomed Res Int 2015:531507

    PubMed  PubMed Central  Google Scholar 

  27. Wei Y, Yu XL, Liang P et al (2015) Guiding and controlling percutaneous pancreas biopsies with contrast-enhanced ultrasound: target lesions are not localized on B-mode ultrasound. Ultrasound Med Biol 41:1561–1569

    Article  PubMed  Google Scholar 

  28. Wu W, Chen MH, Yin SS et al (2006) The role of contrast-enhanced sonography of focal liver lesions before percutaneous biopsy. AJR Am J Roentgenol 187:752–761

    Article  PubMed  Google Scholar 

  29. Kljucevsek T, Pirnovar V, Kljucevsek D (2020) Percutaneous nephrostomy in the neonatal period: indications, complications, and outcome — a single centre experience. Cardiovasc Intervent Radiol 43:1323–1328

  30. Dagli M, Ramchandani P (2011) Percutaneous nephrostomy: technical aspects and indications. Semin Intervent Radiol 28:424–437

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hwang JY, Shin JH, Lee YJ et al (2018) Percutaneous nephrostomy placement in infants and young children. Diagn Interv Imaging 99:157–162

    Article  CAS  PubMed  Google Scholar 

  32. Liu BX, Huang GL, Xie XH et al (2017) Contrast-enhanced US-assisted percutaneous nephrostomy: a technique to increase success rate for patients with nondilated renal collecting system. Radiology 285:293–301

    Article  PubMed  Google Scholar 

  33. Chi T, Usawachintachit M, Weinstein S et al (2017) Contrast enhanced ultrasound as a radiation-free alternative to fluoroscopic nephrostogram for evaluating ureteral patency. J Urol 198:1367–1373

    Article  PubMed  Google Scholar 

  34. Anupindi SA, Chauvin NA, Khwaja A et al (2016) Magnetic resonance imaging of pancreaticobiliary diseases in children: from technique to practice. Pediatr Radiol 46:778–790

    Article  PubMed  Google Scholar 

  35. Lee W, Kim GC, Kim JY et al (2008) Ultrasound and fluoroscopy guided percutaneous transhepatic biliary drainage in patients with nondilated bile ducts. Abdom Imaging 33:555–559

    Article  PubMed  Google Scholar 

  36. Ignee A, Baum U, Schuessler G et al (2009) Contrast-enhanced ultrasound-guided percutaneous cholangiography and cholangiodrainage (CEUS-PTCD). Endoscopy 41:725–726

    Article  CAS  PubMed  Google Scholar 

  37. Feuerstein JD, Cheifetz AS (2017) Crohn disease: epidemiology, diagnosis, and management. Mayo Clin Proc 92:1088–1103

    Article  CAS  PubMed  Google Scholar 

  38. Quaia E (2013) Contrast-enhanced ultrasound of the small bowel in Crohn's disease. Abdom Imaging 38:1005–1013

    Article  PubMed  Google Scholar 

  39. Mao R, Chen YJ, Chen BL et al (2018) Intra-cavitary contrast-enhanced ultrasound: a novel radiation-free method to detect abscess associated penetrating disease in Crohn's disease. J Crohns Colitis 13:593–599

    Article  Google Scholar 

  40. McCuaig CC (2017) Update on classification and diagnosis of vascular malformations. Curr Opin Pediatr 29:448–454

    Article  PubMed  Google Scholar 

  41. Cahill AM, Nijs EL (2011) Pediatric vascular malformations: pathophysiology, diagnosis, and the role of interventional radiology. Cardiovasc Intervent Radiol 34:691–704

    Article  PubMed  Google Scholar 

  42. Acord M, Srinivasan AS, Cahill AM (2016) Percutaneous treatment of lymphatic malformations. Tech Vasc Interv Radiol 19:305–311

    Article  PubMed  Google Scholar 

  43. Dubois J, Thomas-Chausse F, Soulez G (2019) Common (cystic) lymphatic malformations: current knowledge and management. Tech Vasc Interv Radiol 22:100631

    Article  PubMed  Google Scholar 

  44. Wiesinger I, Schreml S, Wohlgemuth WA et al (2015) Perfusion quantification of vascular malformations using contrast-enhanced ultrasound (CEUS) with time intensity curve analysis before and after treatment: first results. Clin Hemorheol Microcirc 62:283–290

    Article  CAS  PubMed  Google Scholar 

  45. Wiesinger I, Jung W, Zausig N et al (2018) Evaluation of dynamic effects of therapy-induced changes in microcirculation after percutaneous treatment of vascular malformations using contrast-enhanced ultrasound (CEUS) and time intensity curve (TIC) analyses. Clin Hemorheol Microcirc 69:45–57

    Article  CAS  PubMed  Google Scholar 

  46. Lv F, Tang J, Luo Y et al (2012) Percutaneous treatment of blunt hepatic and splenic trauma under contrast-enhanced ultrasound guidance. Clin Imaging 36:191–198

    Article  PubMed  Google Scholar 

  47. Minami Y, Kudo M (2011) Review of dynamic contrast-enhanced ultrasound guidance in ablation therapy for hepatocellular carcinoma. World J Gastroenterol 17:4952–4959

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fermand M, Hassen CS, Ariche L et al (2000) Ultrasound investigation of the rotator cuff after computed arthrotomography coupled to bursography. Joint Bone Spine 67:310–314

    CAS  PubMed  Google Scholar 

  49. Capobianco SM, Fahmy MW, Sicari V (2020) Anatomy, thorax, subclavian veins. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK532885/. Accessed 29 Aug 2020

Download references

Acknowledgments

Figure 8 courtesy of Yoav Dori, MD, Children’s Hospital of Philadelphia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Acord.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

A 15-year-old boy presenting for biopsy of a large hepatic mass. Same boy as depicted in Fig. 3. Axial intravenous-contrast-enhanced ultrasound (CEUS) was performed to plan the biopsy trajectory. CEUS reveals an extensive area of necrosis centrally within the mass; however, peripherally, there are areas of viable tumor, which were subsequently targeted for biopsy. Sufficient viable tissue was obtained to provide a diagnosis of undifferentiated embryonal sarcoma (MP4 31484 kb)

A 12-year-old girl presenting with large symptomatic left renal cystic lesion for sclerotherapy injection. Coronal contrast-enhanced ultrasound was performed with direct administration of ultrasound contrast agent through the puncture needle into the cyst following percutaneous access. No communication of the cyst with the renal pelvis was identified, and therefore sclerotherapy proceeded without concern that the sclerosant material would harm the renal collecting system (MP4 17888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acord, M.R., Cahill, A.M., Durand, R. et al. Contrast-enhanced ultrasound in pediatric interventional radiology. Pediatr Radiol 51, 2396–2407 (2021). https://doi.org/10.1007/s00247-020-04853-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04853-4

Keywords

Navigation