Skip to main content

Advertisement

Log in

Initial treatment of pediatric differentiated thyroid cancer: a review of the current risk-adaptive approach

  • Pediatric oncologic imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Differentiated thyroid cancer in children is a rare disease, accounting for only 1.4% of all pediatric malignancies. The diagnosis, biological behavior and treatment of differentiated thyroid cancer in children is different from that in adults. While there are many unresolved issues regarding approaches to management of differentiated thyroid cancer in the pediatric population, there is near universal consensus that treatment of this disease, which includes total thyroidectomy, central lymph node dissection at the time of initial surgery in those with nodal metastases, and the possible use of iodine-131 radiotherapy, is best performed by specialists including high-volume endocrine surgeons and experts with experience in calculating and administering radioactive iodine in children, when deemed appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rivkees SA, Mazzaferri EL, Verburg FA et al (2011) The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr Rev 32:798–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pacini F (2002) Thyroid cancer in children and adolescents. J Endocrinol Invest 25:572–573

    Article  PubMed  Google Scholar 

  3. Hogan AR, Zhuge Y, Perez EA et al (2009) Pediatric thyroid carcinoma: incidence and outcomes in 1,753 patients. J Surg Res 156:167–172

    Article  PubMed  Google Scholar 

  4. Schlumberger MJ (1998) Papillary and follicular thyroid carcinoma. N Engl J Med 338:297–306

    Article  CAS  PubMed  Google Scholar 

  5. Dinauer CA, Breuer C, Rivkees SA (2008) Differentiated thyroid cancer in children: diagnosis and management. Curr Opin Oncol 20:59–65

    Article  PubMed  Google Scholar 

  6. Bauer AJ, Tuttle RM, Francis GL (2002) Differentiated thyroid carcinoma of children and adolescents. Endocrinologist 12:135–142

    Article  Google Scholar 

  7. Waguespack SG, Wells SA (2007) Thyroid cancer. In: Bleyer AW, Barr RD (eds) Cancer in adolescents and young adults. Springer, New York, pp 259–270

    Chapter  Google Scholar 

  8. Parisi MT, Mankoff D (2007) Differentiated pediatric thyroid cancer: correlates with adult disease, controversies in treatment. Semin Nucl Med 37:340–356

    Article  PubMed  Google Scholar 

  9. Parisi MT, Eslamy H, Mankoff D (2016) Management of differentiated thyroid cancer in children: focus on the American Thyroid Association pediatric guidelines. Semin Nucl Med 46:147–164

    Article  PubMed  Google Scholar 

  10. Vergamini LB, Frazier AL, Abrantes FL et al (2014) Increase in the incidence of differentiated thyroid cancer in children, adolescents, and young adults: a population-based study. J Pediatr 164:1418–1485

    Article  Google Scholar 

  11. Hay ID, Gonzalez-Losada T, Reinalda MS et al (2010) Long-term outcome in 215 children and adolescents with papillary thyroid carcinoma treated during 1940–2008. World J Surg 34:1192–1202

    Article  PubMed  Google Scholar 

  12. LaQuaglia MP, Corbally MT, Heller G et al (1988) Recurrence and morbidity in differentiated thyroid cancer in children. Surgery 104:1149–1156

    CAS  Google Scholar 

  13. Newman KD, Black T, Heller G et al (1998) Differentiated thyroid cancer: determinants of disease progression in patients <21 years of age at diagnosis: a report from the Surgical Discipline Committee of the Surgical Committee of the Children’s Cancer Group. Ann Surg 227:533–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jarzab B, Handkiewicz-Junak D, Wloch J et al (2000) Multivariate analysis of prognostic factors for differentiated thyroid carcinoma in children. Eur J Nucl Med 27:833–841

    Article  CAS  PubMed  Google Scholar 

  15. Francis GL, Waguespack SG, Bauer AJ et al (2015) Management guidelines for children with thyroid nodules and differentiated thyroid cancer. The American Thyroid Association Guidelines Task Force on Pediatric Thyroid Cancer. Thyroid 25:716–759

  16. Verburg FA, Van Santen HM, Luster M (2017) Pediatric papillary thyroid cancer: current management challenges. Onco Targets Ther 10:165–175

    Article  CAS  PubMed  Google Scholar 

  17. Sosa JA, Tuggle CT, Wang TS et al (2008) Clinical and economic outcomes of thyroid and parathyroid surgery in children. J Clin Endocrinol Metab 93:3058–3065

    Article  CAS  PubMed  Google Scholar 

  18. Tuggle CT, Roman SA, Wang TS et al (2008) Pediatric endocrine surgery: who is operating on our children? Surgery 144:869–877

    Article  PubMed  Google Scholar 

  19. Rubino C, de Vathaire F, Dottorini ME et al (2003) Second primary malignancies in thyroid cancer patients. Br J Cancer 89:1638–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Subramanian S, Goldstein DP, Parlea L et al (2007) Second primary malignancy risk in thyroid cancer survivors: a systematic review and meta-analysis. Thyroid 17:1277–1288

    Article  PubMed  Google Scholar 

  21. Brown AP, Chen J, Hitchcock YJ et al (2008) The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab 93:504–515

    Article  CAS  PubMed  Google Scholar 

  22. Sawka AM, Thabane L, Parlea L et al (2009) Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid 19:451–457

    Article  CAS  PubMed  Google Scholar 

  23. Molenaar RJ, Sidana S, Radiviyevitch T et al (2018) Risk of hematologic malignancies after radioiodine treatment of well-differentiated thyroid cancer. J Clin Oncol 36:1831–1839

    Article  CAS  PubMed  Google Scholar 

  24. Verburg FA, Giovanella L, Iakovou et al (2018) I-131 as adjuvant treatment for differentiated thyroid carcinoma may cause an increase in the incidence of secondary haematological malignancies: an “inconvenient” truth. Eur J Nucl Med Mol Imaging 45:2247–2249

  25. Bargen AE, Meyer-Rochow GY, Delbridge LW et al (2009) Outcomes of surgically managed pediatric thyroid cancer. J Surg Res 156:70–73

    Article  Google Scholar 

  26. Verburg FA, Mader U, Luster M, Reiners C (2009) Primary tumor diameter as a risk factor for advanced disease features of differentiated thyroid carcinoma. Clin Endocrinol 7:291–297

    Article  Google Scholar 

  27. Machens A, Holzhausen HJ, Dralle H (2005) The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma A comparative analysis. Cancer 103:2269–2273

    Google Scholar 

  28. Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mihailovic J, Nikoletic K, Srbovan D (2014) Recurrent disease in juvenile differentiated thyroid carcinoma: prognostic factors, treatments and outcomes. J Nucl Med 55:710–717

    Article  PubMed  Google Scholar 

  30. Handkiewicz-Junak D, Wloch J, Rosko J et al (2007) Total thyroidectomy and adjuvant radioiodine treatment independently decrease locoregional recurrence risk in childhood and adolescent differentiated thyroid cancer. J Nucl Med 48:879–888

    Article  CAS  PubMed  Google Scholar 

  31. Bingol-Kologlu M, Tanyel FC, Senocak ME et al (2000) Surgical treatment of differentiated thyroid cancer in children. Eur J Pediatr Surg 10:347–352

    Article  CAS  PubMed  Google Scholar 

  32. Mazzaferri EL, Jhiang SM (1994) Long-term impact of initial surgery and medical therapy on papillary and follicular thyroid cancer. Am J Med 97:418–428

    Article  CAS  PubMed  Google Scholar 

  33. Reiners C, Farahati J (1999) 131I therapy of thyroid cancer patients. Q J Nucl Med 43:324–335

    CAS  PubMed  Google Scholar 

  34. Mazzaferri EL, Kloos RT (2001) Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 86:1433–1441

    Article  Google Scholar 

  35. Reiners C, Biko J, Haenscheid H et al (2013) Twenty-five years after Chernobyl: outcome of radioiodine treatment in children and adolescents with very high-risk radiation-induced differentiated thyroid carcinoma. J Clin Endocrinol Metab 98:3039–3048

    Article  CAS  PubMed  Google Scholar 

  36. Robbins RJ, Schlumberger MJ (2005) The evolving role of (131)I for the treatment of differentiated thyroid carcinoma. J Nucl Med 46:28S–37S

    CAS  PubMed  Google Scholar 

  37. Van Nostrand D (2009) The risks and benefits of I-131 therapy in patients with well-differentiated thyroid cancer. Thyroid 19:1381–1391

  38. Schlumberger M, Catargi B, Borget I et al (2012) Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med 366:1663–1673

    Article  CAS  PubMed  Google Scholar 

  39. Jonklaas J, Cooper DS, Ain KB et al (2010) Radioiodine therapy in patients with stage I differentiated thyroid cancer. Thyroid 20:1423–1424

    Article  PubMed  Google Scholar 

  40. Iyer NG, Morris LGT, Tuttle M et al (2011) Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer 117:4439–4446

    Article  PubMed  Google Scholar 

  41. Clement SC, Peeters RP, Ronckers CM et al (2015) Immediate and long-term adverse effects of radioiodine therapy for differentiated thyroid carcinoma — a systematic review. Cancer Treat Rev 41:925–934

    Article  CAS  PubMed  Google Scholar 

  42. Verburg FA, Hanscheid H, Biki J et al (2010) Dosimetry-guided high-activity (131)I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging 37:896–903

    Article  PubMed  Google Scholar 

  43. Walter MA, Turtschi CP, Schindler C et al (2007) The dental safety profile of high-dose radioiodine therapy for thyroid cancer: long term results of a longitudinal cohort study. J Nucl Med 48:1620–1625

    Article  PubMed  Google Scholar 

  44. Vini L, Hyer S, Al-Saadi A et al (2002) Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J 78:92–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sawka AM, Lakra DC, Lea J et al (2008) A systemic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female cancer survivors. Clin Endocrinol 69:479–490

    Article  Google Scholar 

  46. Garsi JP, Schlumberger M, Rubino C et al (2008) Therapeutic administration of 131I for differentiated thyroid cancer: radiation dose to the ovaries and outcome of pregnancies. J Nucl Med 49:845–852

    Article  PubMed  Google Scholar 

  47. Sawka AM, Lea J, Alshehri B et al (2008) A systematic review of the gonadal effects of therapeutic radioactive iodine in male thyroid cancer survivors. Clin Endocrinol 68:610–617

    Article  Google Scholar 

  48. Hyer S, Vini L, O’Connell M et al (2002) Testicular dose and fertility in men following I (131) therapy for thyroid cancer. Clin Endocrinol 56:755–758

    Article  CAS  Google Scholar 

  49. Mostafa M, Vali R, Chan J et al (2016) Variants and pitfalls on radioiodine scans in pediatric patients with differentiated thyroid carcinoma. Pediatr Radiol 46:1579–1589

    Article  PubMed  Google Scholar 

  50. Spies WG, Wojtowicz CH, Spies SM et al (1989) Value of post-therapy whole-body I-131 imaging in the evaluation of patients with thyroid carcinoma having undergone high-dose I-131 therapy. Clin Nucl Med 14:793–800

    Article  CAS  PubMed  Google Scholar 

  51. Schroeder PR, Haugen BR, Pacini F et al (2006) A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J Clin Endocrinol Metab 91:878–884

    Article  CAS  PubMed  Google Scholar 

  52. Iorcansky S, Herzovich V, Qualey RR et al (2005) Serum thyrotropin (TSH) levels after recombinant human TSH injections in children and teenagers with papillary thyroid cancer. J Clin Endocrinol Metab 90:6553–6555

    Article  CAS  PubMed  Google Scholar 

  53. Hoe FM, Charron M, Moshang T Jr (2006) Use of recombinant human TSH-stimulated thyroglobulin level and diagnostic whole body scan in children with differentiated thyroid cancer. J Pediatr Endocrinol Metabol 19:25–30

    Article  CAS  Google Scholar 

  54. Lau WF, Zacharin MR, Waters K et al (2006) Management of paediatric thyroid carcinoma: recent experience with recombinant human thyroid stimulating hormone in preparation for radioiodine therapy. Intern Med J 36:564–570

    Article  CAS  PubMed  Google Scholar 

  55. Luster M, Handkiewicz-Junak D, Grossi A et al (2009) Recombinant thyrotropin use in children and adolescents with differentiated thyroid cancer: a multicenter retrospective study. J Clin Endocrinol Metab 94:3948–3953

    Article  CAS  PubMed  Google Scholar 

  56. Sonenberg M (2002) Low-iodine diet in the treatment of differentiated thyroid cancer with radioactive iodine. Endocrine 17:141–143

    Article  CAS  PubMed  Google Scholar 

  57. Park JT, Hennessey JV (2004) Two-week low iodine diet is necessary for adequate patient preparation for radioiodine rhTSH scanning in patients taking levothyroxine. Thyroid 14:57–63

    Article  CAS  PubMed  Google Scholar 

  58. Sohn SY, Choi JH, Kim NK et al (2014) The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid 24:872–877

    Article  CAS  PubMed  Google Scholar 

  59. Benua RS, Cicale NR, Sonnenberg R, Rawson RW (1962) The relation of radioiodine dosimetry to results and side effects in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 87:171–182

    CAS  PubMed  Google Scholar 

  60. Van Nostrand D, Atkins F (2011) Pediatric differentiated thyroid cancer: can the prescribed activity of I-131 be increased? J Clin Endocrinol Metab 96:2401–2403

    Article  CAS  PubMed  Google Scholar 

  61. Maxon HR, Thomas SR, Hertzberg VS et al (1983) Relation between effective radiation dose and outcome if radioiodine therapy for thyroid cancer. N Engl J Med 309:937–941

    Article  CAS  PubMed  Google Scholar 

  62. Maxon HR, Englaro EE, Thomas SR et al (1992) Radioiodine-131 radiotherapy for well-differentiated thyroid cancer — a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med 33:1132–1136

    PubMed  Google Scholar 

  63. Klubo-Gwiezdzinska K, Van Nostrand D, Atkins F et al (2011) Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab 96:3217–3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dorn R, Kopp J, Vogt H et al (2003) Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med 44:451–456

    CAS  PubMed  Google Scholar 

  65. Hanscheid H, Lassmann M, Luster M et al (2006) Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH stimulation or hormone withdrawal. J Nucl Med 47:648–654

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marguerite T. Parisi.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parisi, M.T., Khalatbari, H., Parikh, S.R. et al. Initial treatment of pediatric differentiated thyroid cancer: a review of the current risk-adaptive approach. Pediatr Radiol 49, 1391–1403 (2019). https://doi.org/10.1007/s00247-019-04457-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-019-04457-7

Keywords

Navigation