Skip to main content

Advertisement

Log in

Lung magnetic resonance imaging for pneumonia in children

  • Minisymposium: Imaging Pneumonia
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Technical factors have historically limited the role of MRI in the evaluation of pneumonia in children in routine clinical practice. As imaging technology has advanced, recent studies utilizing practical MR imaging protocols have shown MRI to be an accurate potential alternative to CT for the evaluation of pneumonia and its complications. This article provides up-to-date MR imaging techniques that can be implemented in most radiology departments to evaluate pneumonia in children. Imaging findings in pneumonia on MRI are also reviewed. In addition, the current literature describing the diagnostic performance of MRI for pneumonia is discussed. Furthermore, potential risks and limitations of MRI for the evaluation of pneumonia in children are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rudan I, Tomaskovic L, Boschi-Pinto C et al (2004) Global estimate of the incidence of clinical pneumonia among children under five years of age. Bull World Health Organ 82:895–903

    PubMed  Google Scholar 

  2. Jokinen C, Heiskanen L, Juvonen H et al (1993) Incidence of community-acquired pneumonia in the population of four municipalities in eastern Finland. Am J Epidemiol 137:977–988

    Article  CAS  PubMed  Google Scholar 

  3. Swingler GH, Hussey GD, Zwarenstein M (1998) Randomised controlled trial of clinical outcome after chest radiograph in ambulatory acute lower-respiratory infection in children. Lancet 351:404–408

    Article  CAS  PubMed  Google Scholar 

  4. Cao AM, Choy JP, Mohanakrishnan LN et al (2013) Chest radiographs for acute lower respiratory tract infections. Cochrane Database Syst Rev 12:Cd009119

    Google Scholar 

  5. Wheeler JH, Fishman EK (1996) Computed tomography in the management of chest infections: current status. Clin Infect Dis 23:232–240

    Article  CAS  PubMed  Google Scholar 

  6. Lahde S, Jartti A, Broas M et al (2002) HRCT findings in the lungs of primary care patients with lower respiratory tract infection. Acta Radiol 43:159–163

    Article  CAS  PubMed  Google Scholar 

  7. Syrjala H, Broas M, Suramo I et al (1998) High-resolution computed tomography for the diagnosis of community-acquired pneumonia. Clin Infect Dis 27:358–363

    Article  CAS  PubMed  Google Scholar 

  8. Siegel MJ (1990) Chest applications of magnetic resonance imaging in children. Top Magn Reson Imaging 3:1–23

    Article  CAS  PubMed  Google Scholar 

  9. Biederer J, Beer M, Hirsch W et al (2012b) MRI of the lung (2/3). Why ... when ... how? Insights Imaging 3:355–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rupprecht T, Bowing B, Kuth R et al (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Eur Radiol 12:2752–2756

    PubMed  Google Scholar 

  11. Wagner M, Bowing B, Kuth R et al (2001) Low field thoracic MRI--a fast and radiation free routine imaging modality in children. Magn Reson Imaging 19:975–983

    Article  CAS  PubMed  Google Scholar 

  12. Yikilmaz A, Koc A, Coskun A et al (2011) Evaluation of pneumonia in children: comparison of MRI with fast imaging sequences at 1.5T with chest radiographs. Acta Radiol 52:914–919

    Article  PubMed  Google Scholar 

  13. Serra G, Milito C, Mitrevski M et al (2011) Lung MRI as a possible alternative to CT scan for patients with primary immune deficiencies and increased radiosensitivity. Chest 140:1581–1589

    Article  PubMed  Google Scholar 

  14. Attenberger UI, Morelli JN, Henzler T et al (2014) 3 Tesla proton MRI for the diagnosis of pneumonia/lung infiltrates in neutropenic patients with acute myeloid leukemia: initial results in comparison to HRCT. Eur J Radiol 83:e61–e66

    Article  CAS  PubMed  Google Scholar 

  15. Rieger C, Herzog P, Eibel R et al (2008) Pulmonary MRI--a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer 16:599–606

    Article  CAS  PubMed  Google Scholar 

  16. Ekinci A, Yucel Ucarkus T, Okur A et al (2017) MRI of pneumonia in immunocompromised patients: comparison with CT. Diagn Interv Radiol 23:22–28

    Article  PubMed  Google Scholar 

  17. Sodhi KS, Khandelwal N, Saxena AK et al (2016a) Rapid lung MRI - paradigm shift in evaluation of febrile neutropenia in children with leukemia: a pilot study. Leuk Lymphoma 57:70–75

    Article  PubMed  Google Scholar 

  18. Rizzi EB, Schinina V, Cristofaro M et al (2011) Detection of pulmonary tuberculosis: comparing MR imaging with HRCT. BMC Infect Dis 11:243

    Article  PubMed  Google Scholar 

  19. Hirsch W, Sorge I, Krohmer S et al (2008) MRI of the lungs in children. Eur J Radiol 68:278–288

    Article  PubMed  Google Scholar 

  20. Lee EY (2008) Advancing CT and MR imaging of the lungs and airways in children: imaging into practice. Pediatr Radiol 38:S208–S212

    Article  PubMed  Google Scholar 

  21. de Amorim e Silva CJ, Mackenzie A, Hallowell LM et al (2006) Practice MRI: reducing the need for sedation and general anaesthesia in children undergoing MRI. Australas Radiol 50:319–323

  22. Heng Vong C, Bajard A, Thiesse P et al (2012) Deep sedation in pediatric imaging: efficacy and safety of intravenous chlorpromazine. Pediatr Radiol 42:552–561

    Article  CAS  PubMed  Google Scholar 

  23. Lutterbey G, Grohe C, Gieseke J et al (2007) Initial experience with lung-MRI at 3.0T: comparison with CT and clinical data in the evaluation of interstitial lung disease activity. Eur J Radiol 61:256–261

    Article  CAS  PubMed  Google Scholar 

  24. Newman B, Krane EJ, Gawande R et al (2014) Chest CT in children: anesthesia and atelectasis. Pediatr Radiol 44:164–172

    Article  PubMed  Google Scholar 

  25. Gorkem SB, Coskun A, Yikilmaz A et al (2013) Evaluation of pediatric thoracic disorders: comparison of unenhanced fast-imaging-sequence 1.5-T MRI and contrast-enhanced MDCT. AJR Am J Roentgenol 200:1352–1357

    Article  PubMed  Google Scholar 

  26. Sodhi KS, Khandelwal N, Saxena AK et al (2016b) Rapid lung MRI in children with pulmonary infections: time to change our diagnostic algorithms. J Magn Reson Imaging 43:1196–1206

    Article  PubMed  Google Scholar 

  27. Gorkem SB, Kose S, Lee EY et al (2017) Thoracic MRI evaluation of sarcoidosis in children. Pediatr Pulmonol 52:494–499

    Article  PubMed  Google Scholar 

  28. Buckingham SJ, Hansell DM (2003) Aspergillus in the lung: diverse and coincident forms. Eur Radiol 13:1786–1800

    Article  PubMed  Google Scholar 

  29. Donnelly LF, Klosterman LA (1997) Pneumonia in children: decreased parenchymal contrast enhancement--CT sign of intense illness and impending cavitary necrosis. Radiology 205:817–820

    Article  CAS  PubMed  Google Scholar 

  30. Eslamy HK, Newman B (2011) Pneumonia in normal and immunocompromised children: an overview and update. Radiol Clin N Am 49:895–920

    Article  PubMed  Google Scholar 

  31. Donnelly LF (2001) Practical issues concerning imaging of pulmonary infection in children. J Thorac Imaging 16:238–250

    Article  CAS  PubMed  Google Scholar 

  32. Peprah KO, Andronikou S, Goussard P (2012) Characteristic magnetic resonance imaging low T2 signal intensity of necrotic lung parenchyma in children with pulmonary tuberculosis. J Thorac Imaging 27:171–174

    Article  PubMed  Google Scholar 

  33. Peltola V, Ruuskanen O, Svedstrom E (2008) Magnetic resonance imaging of lung infections in children. Pediatr Radiol 38:1225–1231

    Article  PubMed  Google Scholar 

  34. Osborne D, White P (1979) Radiology of epidemic adenovirus 21 infection of the lower respiratory tract in infants and young children. AJR Am J Roentgenol 133:397–400

    Article  CAS  PubMed  Google Scholar 

  35. Westra SJ, Adler B, Yikilmaz A et al (2013) Pulmonary infection. In: Coley BD (ed) Caffey's pediatric diagnostic imaging. Elsevier, Philadelphia, pp 567–581

    Google Scholar 

  36. Brady MT, Marcon MJ (2014) Pseudomonas and related genera. In: Cherry JD, Harrison GJ, Kaplan SL et al (eds) Feigin and Cherry's textbook of pediatric infectious diseases. Elsevier, Philadelphia, pp 1582–1605

    Google Scholar 

  37. Chu HQ, Li B, Zhao L et al (2015) Chest imaging comparison between non-tuberculous and tuberculosis mycobacteria in sputum acid fast bacilli smear-positive patients. Eur Rev Med Pharmacol Sci 19:2429–2439

    PubMed  Google Scholar 

  38. Maffessanti M, Candusso M, Brizzi F et al (1996) Cystic fibrosis in children: HRCT findings and distribution of disease. J Thorac Imaging 11:27–38

    Article  CAS  PubMed  Google Scholar 

  39. Kennedy MP, Noone PG, Leigh MW et al (2007) High-resolution CT of patients with primary ciliary dyskinesia. AJR Am J Roentgenol 188:1232–1238

    Article  PubMed  Google Scholar 

  40. Girshin M, Shapiro V, Rhee A et al (2009) Increased risk of general anesthesia for high-risk patients undergoing magnetic resonance imaging. J Comput Assist Tomogr 33:312–315

    Article  PubMed  Google Scholar 

  41. van der Griend BF, Lister NA, McKenzie IM et al (2011) Postoperative mortality in children after 101,885 anesthetics at a tertiary pediatric hospital. Anesth Analg 112:1440–1447

    Article  PubMed  Google Scholar 

  42. Rappaport BA, Suresh S, Hertz S et al (2015) Anesthetic neurotoxicity--clinical implications of animal models. N Engl J Med 372:796–797

    Article  CAS  PubMed  Google Scholar 

  43. Creeley C, Dikranian K, Dissen G et al (2013) Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 110:i29–i38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brambrink AM, Evers AS, Avidan MS et al (2012) Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116:372–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flick RP, Katusic SK, Colligan RC et al (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:e1053–e1061

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mellon RD, Simone AF, Rappaport BA (2007) Use of anesthetic agents in neonates and young children. Anesth Analg 104:509–520

    Article  CAS  PubMed  Google Scholar 

  47. Grobner T (2006) Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108

    Article  CAS  PubMed  Google Scholar 

  48. High WA, Ayers RA, Chandler J et al (2007) Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56:21–26

    Article  PubMed  Google Scholar 

  49. Marckmann P, Skov L, Rossen K et al (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17:2359–2362

    Article  PubMed  Google Scholar 

  50. Kanda T, Nakai Y, Aoki S et al (2016) Contribution of metals to brain MR signal intensity: review articles. Jpn J Radiol 34:258–266

    Article  CAS  PubMed  Google Scholar 

  51. Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841

    Article  PubMed  Google Scholar 

  52. Flood TF, Stence NV, Maloney JA et al (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228

    Article  PubMed  Google Scholar 

  53. Hu HH, Pokorney A, Towbin RB et al (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598

    Article  PubMed  Google Scholar 

  54. Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D (2016) Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 58:433–441

    Article  PubMed  Google Scholar 

  55. Blitman NM, Lee HK, Jain VR et al (2007) Pulmonary atelectasis in children anesthetized for cardiothoracic MR: evaluation of risk factors. J Comput Assist Tomogr 31:789–794

    Article  PubMed  Google Scholar 

  56. Biederer J, Mirsadraee S, Beer M et al (2012a) MRI of the lung (3/3)-current applications and future perspectives. Insights Imaging 3:373–386

    Article  PubMed  PubMed Central  Google Scholar 

  57. Song HK, Dougherty L (2004) Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 52:815–824

    Article  PubMed  Google Scholar 

  58. Lin W, Guo J, Rosen MA et al (2008) Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med 60:1135–1146

    Article  PubMed  PubMed Central  Google Scholar 

  59. Miller GW, Mugler JP 3rd, Sá RC et al (2014) Advances in functional and structural imaging of the human lung using proton MRI. NMR Biomed 27:1542–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Serai SD, Laor T, Dwek JR et al (2014) Feasibility of ultrashort TE (UTE) imaging of children at 1.5 T. Pediatr Radiol 44:103–108

    Article  PubMed  Google Scholar 

  61. Johnson KM, Fain SB, Schiebler ML et al (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70:1241–1250

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C . Liszewski.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liszewski, M.C..., Görkem, S., Sodhi, K.S. et al. Lung magnetic resonance imaging for pneumonia in children. Pediatr Radiol 47, 1420–1430 (2017). https://doi.org/10.1007/s00247-017-3865-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-017-3865-2

Keywords

Navigation