Skip to main content

Advertisement

Log in

Lesional perfusion abnormalities in Leigh disease demonstrated by arterial spin labeling correlate with disease activity

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Leigh disease is a metabolic disorder of the mitochondrial respiratory chain culminating in symmetrical necrotizing lesions in the deep gray nuclei or brainstem. Apart from classic gliotic/necrotic lesions, small-vessel proliferation is also characteristic on histopathology. We have observed lesional hyperperfusion on arterial spin-labeling (ASL) sequence in children with Leigh disease.

Objective

In this cross-sectional analysis, we evaluated lesional ASL perfusion characteristics in children with Leigh syndrome.

Materials and methods

We searched the imaging database from an academic children’s hospital for “arterial spin labeling, perfusion, necrosis, lactate, and Leigh” to build a cohort of children for retrospective analysis. We reviewed each child’s medical record to confirm a diagnosis of Leigh disease, excluding exams with artifact, technical limitations, and without ASL images. We evaluated the degree and extent of cerebral blood flow and relationship to brain lesions. Images were compared to normal exams from an aged-matche cohort.

Results

The database search yielded 45 exams; 30 were excluded. We evaluated 15 exams from 8 children with Leigh disease and 15 age-matched normal exams. In general, Leigh brain perfusion ranged from hyperintense (n=10) to hypointense (n=5). Necrotic lesions appeared hypointense/hypoperfused. Active lesions with associated restricted diffusion demonstrated hyperperfusion. ASL perfusion patterns differed significantly from those on age-matched normal studies (P=<.0001). Disease activity positively correlated with cerebral deep gray nuclei hyperperfusion (P=0.0037) and lesion grade (P=0.0256).

Conclusion

Children with Leigh disease have abnormal perfusion of brain lesions. Hyperperfusion can be found in active brain lesions, possibly associated with small-vessel proliferation characteristic of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ruhoy IS, Saneto RP (2014) The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet 7:221–234

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rahman S, Blok RD, Dahl HH et al (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39:343–351

    Article  CAS  PubMed  Google Scholar 

  3. Parikh S, Goldstein A, Koenig MK et al (2015) Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med 17:689–701

    Article  CAS  PubMed  Google Scholar 

  4. Arii J, Tanabe Y (2000) Leigh syndrome: serial MR imaging and clinical follow-up. AJNR Am J Neuroradiol 21:1502–1509

    CAS  PubMed  Google Scholar 

  5. Leigh D (1951) Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry 14:216–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lake NJ, Bird MJ, Isohanni P, Paetau A (2015) Leigh syndrome: neuropathology and pathogenesis 74:482–492

  7. Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL dementia. Magn Reson Med 73:102–116

    Article  PubMed  Google Scholar 

  8. Wintermark M, Lepori D, Cotting J et al (2004) Brain perfusion in children: evolution with age assessed by quantitative perfusion computed tomography. Pediatrics 113:1642–1652

    Article  PubMed  Google Scholar 

  9. Gropman AL (2013) Mitochondrial mechanisms and neurological disorders. Neurotherapeutics 10:185

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gropman AL (2013) Neuroimaging in mitochondrial disorders. Neurotherapeutics 10:273–285

    Article  PubMed  Google Scholar 

  11. Takahashi S, Oki J, Miyamoto A et al (1999) Proton magnetic resonance spectroscopy to study the metabolic changes in the brain of a patient with Leigh syndrome. Brain Dev 21:200–204

    Article  CAS  PubMed  Google Scholar 

  12. Krageloh-Mann I, Grodd W, Schoning M et al (1993) Proton spectroscopy in five patients with Leigh’s disease and mitochondrial enzyme deficiency. Dev Med Child Neurol 35:769–776

    Article  CAS  PubMed  Google Scholar 

  13. Jurkiewicz E, Chelstowska S, Pakula-Kosciesza I et al (2011) Proton MR spectroscopy in patients with Leigh syndrome. Neuroradiol J 24:424–428

    Article  CAS  PubMed  Google Scholar 

  14. Barkovich AJ, Patay Z (2012) Metabolic, toxic, and inflammatory brain disorders. In: Barkovich AJ, Raybaud C (eds) Pediatric neuroimaging, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 178–182

    Google Scholar 

  15. Delonlay P, Rotig A, Sarnat HB (2013) Respiratory chain deficiencies. Handb Clin Neurol 113:1651–1666

    Article  PubMed  Google Scholar 

  16. Whitehead MT, Fricke S, Gropman A (2015) Structural brain defects. Clin Perinatol 242:337–361

    Article  Google Scholar 

  17. Hegde AN, Mohan S, Lath N et al (2011) Differential diagnosis for bilateral abnormalities of the basal ganglia and thalamus. Radiographics 31:5–30

    Article  PubMed  Google Scholar 

  18. Deibler AD, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 1: techniques and artifacts. AJNR Am J Neuroradiol 29:1228–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 29:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol 29:1428–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. László A, Ambrus E, Vörös E et al (2009) 99-mTc-HMPAO single photon emission computed tomography examinations in genetically determined neurometabolic disorders. Ideggyogy Sz 62:168–177

    PubMed  Google Scholar 

  22. Yen TC, Yeh SH (1995) 99mTc-HMPAO brain single photon emission computerized tomography in mitochondrial encephalomyopathies. Zhongua Yi Xue Za Zhi 56:287–291

    CAS  Google Scholar 

  23. Chen Z, Li J, Lou X et al (2012) Sequential evaluation of brain lesions using functional magnetic resonance imaging in patients with Leigh syndrome. Nan Fang Yi Ke Da Xue Xue Bao 32:1474–1477

    PubMed  Google Scholar 

  24. Chi CS, Lee HF, Tsai CR et al (2011) Lactate peak on brain MRS in children with syndromic mitochondrial diseases. J Chin Med Assoc 74:305–359

    Article  CAS  PubMed  Google Scholar 

  25. Sijens PE, Smit GP, Rodiger LA et al (2008) MR spectroscopy of the brain in Leigh syndrome. Brain Dev 30:579–583

    Article  CAS  PubMed  Google Scholar 

  26. Detre JA, Wang ZY, Bogdan AR et al (1991) Regional variation in brain lactate in Leigh syndrome by localized 1H magnetic resonance spectroscopy. Ann Neurol 29:218–221

    Article  CAS  PubMed  Google Scholar 

  27. Avula S, Parikh S, Demarest S et al (2014) Treatment of mitochondrial disorders. Curr Treat Options Neurol 16:292

    Article  PubMed  PubMed Central  Google Scholar 

  28. Todd MM, Weeks J (1996) Comparative effects of propofol, pentobarbital, and isoflurane on cerebral blood flow and blood volume. J Neurosurg Anesthesiol 8:296–303

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Licht DJ, Jahng GH et al (2003) Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging 18:404–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Whitehead.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitehead, M.T., Lee, B. & Gropman, A. Lesional perfusion abnormalities in Leigh disease demonstrated by arterial spin labeling correlate with disease activity. Pediatr Radiol 46, 1309–1316 (2016). https://doi.org/10.1007/s00247-016-3616-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3616-9

Keywords

Navigation