Skip to main content
Log in

Neuroimaging of phakomatoses: overview and advances

  • Advances in Pediatric Neuroradiology
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The phakomatoses are disorders characterized by multiple hamartomas and other congenital malformations affecting mainly the skin and the central and peripheral nervous systems. Many affected individuals have an increased genetic susceptibility to develop malignancies. Imaging is central in the diagnosis of many of the phakomatoses, and MRI is used as a screening tool in many children with known neurocutaneous disorders. This manuscript addresses the three most common (neurofibromatosis type 1, tuberous sclerosis complex, Sturge–Weber syndrome) and focuses on pathophysiological and radiologic insights that have emerged in the last few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nandigam K, Mechtler LL, Smirniotopoulos JG (2014) Neuroimaging of neurocutaneous diseases. Neurol Clin 32:159–192

    Article  PubMed  Google Scholar 

  2. Williams VC, Lucas J, Babcock MA et al (2009) Neurofibromatosis type 1 revisited. Pediatrics 123:124–133

    Article  PubMed  Google Scholar 

  3. Seizinger BR, Rouleau GA, Ozelins LJ et al (1987) Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell 49:589–594

    Article  CAS  PubMed  Google Scholar 

  4. Dasgupta B, Gutmann DH (2005) Neurofibromin regulates neural stem cell proliferation, survival, and astroglial differentiation in vitro and in vivo. J Neurosci 25:5584–5594

    Article  CAS  PubMed  Google Scholar 

  5. Ghosh PS, Rothner AD, Emch TM et al (2013) Cerebral vasculopathy in children with neurofibromatosis type 1. J Child Neurol 28:95–101

    Article  PubMed  Google Scholar 

  6. Rosenbaum T, Boissy YL, Ling B (1999) Neurofibromin, the neurofibromatosis type 1 Ras-GAP, is required for appropriate P0 expression and myelination. Ann N Y Acad Sci 883:203–214

    Article  CAS  PubMed  Google Scholar 

  7. Habib A, Gulcher JR, Högnason T et al (1998) The OMgp gene, a second growth suppressor within the NF1 gene. Oncogene 16:1525–1531

    Article  CAS  PubMed  Google Scholar 

  8. Gill DS, Hyman SL, Steinberg A et al (2006) Age-related findings on MRI in neurofibromatosis type 1. Pediatr Radiol 36:1048–1056

    Article  PubMed  Google Scholar 

  9. DiPaolo DP, Zimmerman RA, Rorke LB (1995) Neurofibromatosis type 1: pathologic substrate of high-signal intensity foci in the brain. Radiology 195:721–724

    Article  CAS  PubMed  Google Scholar 

  10. Billiet T, Mädler B, D’Arco F et al (2014) Characterizing the microstructural basis of ‘unidentified bright objects’ in neurofibromatosis type 1: a combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin 13:649–658

    Article  Google Scholar 

  11. Dubovsky EC, Booth TN, Vezina G et al (2001) MR imaging of the corpus callosum in pediatric patients with neurofibromatosis type 1. AJNR Am J Neuroradiol 22:190–195

    CAS  PubMed  Google Scholar 

  12. Pride N, Payne JM, Webster R et al (2010) Corpus callosum morphology and its relationship to cognitive function in neurofibromatosis type1. J Child Neurol 25:834–841

    Article  PubMed  Google Scholar 

  13. Karlsgodt KH, Rosser T, Lutkenhoff ES et al (2012) Alterations in white matter microstructure in neurofibromatosis-1. PLoS One 7:e47854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fisher MJ, Loguidice M, Gutmann DH et al (2012) Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neurol Oncol 14:790–797

    Article  Google Scholar 

  15. Gonen O, Wang ZJ, Viswanathan AK et al (1999) Three-dimensional multivoxel proton MR spectroscopy of the brain in children with neurofibromatosis type 1. AJNR Am J Neuroradiol 20:1333–1341

    CAS  PubMed  Google Scholar 

  16. Albers AC, Gutmann DH (2009) Gliomas in patients with neurofibromatosis type 1. Expert Rev Neurother 9:535–539

    Article  PubMed  Google Scholar 

  17. Acosta MT, Walsh KS, Kardel PG et al (2012) Cognitive profiles of neurofibromatosis type 1 patients with minor brain malformations. Pediatr Neurol 46:231–234

    Article  PubMed  Google Scholar 

  18. Matsumine A, Kusuzaki K, Nakamura T et al (2009) Differentiation between neurofibromas and malignant peripheral nerve sheath tumors in neurofibromatosis 1 evaluated by MRI. J Cancer Res Clin Oncol 135:891–900

    Article  PubMed  Google Scholar 

  19. Ferner RE, Golding JF, Smith M et al (2008) [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 19:390–394

    Article  CAS  PubMed  Google Scholar 

  20. Kaas B, Huisman TA, Tekes A et al (2013) Spectrum and prevalence of vasculopathy in pediatric neurofibromatosis type 1. J Child Neurol 28:561–569

    Article  PubMed Central  PubMed  Google Scholar 

  21. Van Eeghen AM, Ortiz-Terán L, Johnson J et al (2013) The neuroanatomical phenotype of tuberous sclerosis complex: focus on radial migration lines. Neuroradiology 55:1007–1014

    Article  PubMed  Google Scholar 

  22. Pinto Gama HP, da Rocha AJ, Braga FT et al (2006) Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis. Pediatr Radiol 36:119–125

    Article  PubMed  Google Scholar 

  23. Roth J, Roach ES, Bartels U et al (2013) Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the international tuberous sclerosis complex consensus conference. Pediatr Neurol 49:439–444

    Article  PubMed  Google Scholar 

  24. Jahodova A, Krsek P, Kyncl M et al (2014) Distinctive MRI features of the epileptogenic zone in children with tuberous sclerosis. Eur J Radiol 83:703–709

    Article  CAS  PubMed  Google Scholar 

  25. Tiwari VN, Kumar A, Chakraborty PK et al (2012) Can diffusion tensor imaging (DTI) identify epileptogenic tubers in tuberous sclerosis complex? Correlation with α-[11C]methyl-L-tryptophan ([11C] AMT) positron emission tomography (PET). J Child Neurol 27:598–603

    Article  PubMed  Google Scholar 

  26. Vaughn J, Hagiwara M, Katz J et al (2013) MRI characterization and longitudinal study of focal cerebellar lesions in a young tuberous sclerosis cohort. AJNR Am J Neuroradiol 34:655–659

    Article  CAS  PubMed  Google Scholar 

  27. Daghistani R, Rutka J, Widjaja E (2014) MRI characteristics of cerebellar tubers and their longitudinal changes in children with tuberous sclerosis complex. Childs Nerv Syst 31:109–113

  28. Shirley MD, Tang H, Gallione CJ et al (2013) Sturge–Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 368:1971–1979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Parsa CF (2013) Focal venous hypertension as a pathophysiologic mechanism for tissue hypertrophy, port-wine stains, the Sturge–Weber syndrome, and related disorders: proof of concept with novel hypothesis for underlying etiological cause (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 111:180–215

    PubMed Central  PubMed  Google Scholar 

  30. Cagneaux M, Paoli V, Blanchard G et al (2013) Pre- and postnatal imaging of early cerebral damage in Sturge–Weber syndrome. Pediatr Radiol 43:1536–1539

    Article  PubMed  Google Scholar 

  31. Griffiths PD, Coley SC, Romanowski CA et al (2003) Contrast-enhanced fluid-attenuated inversion recovery imaging for leptomeningeal disease in children. AJNR Am J Neuroradiol 24:719–723

    PubMed  Google Scholar 

  32. Juhász C, Haacke EM, Hu J et al (2007) Multimodality imaging of cortical and white matter abnormalities in Sturge–Weber syndrome. AJNR Am J Neuroradiol 28:900–906

    PubMed  Google Scholar 

  33. Jacoby CG, Yuh WT, Afifi A et al (1987) Accelerated myelination in early Sturge–Weber syndrome demonstrated by MR imaging. J Comput Assist Tomogr 11:226–231

    Article  CAS  PubMed  Google Scholar 

  34. Alkonyi B, Miao Y, Wu J et al (2012) A perfusion-metabolic mismatch in Sturge–Weber syndrome: a multimodality imaging study. Brain Dev 34:553–562

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

Dr. Vezina has no financial interests, investigational or off-label uses to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Vézina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vézina, G. Neuroimaging of phakomatoses: overview and advances. Pediatr Radiol 45 (Suppl 3), 433–442 (2015). https://doi.org/10.1007/s00247-015-3282-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-015-3282-3

Keywords

Navigation