Skip to main content
Log in

Hemodynamic and Echocardiographic Characteristics and the Presence of Pulmonary Hypertension in Patent Ductus Arteriosus Patients who Underwent Transcatheter Closure

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

We investigated the hemodynamic parameters of pediatric PDA patients and focused on the influence of PDA size on pulmonary arterial pressure and the prevalence of pulmonary hypertension. A total of 52 patients aged between 2 months and 20 years who received transcatheter closure of a PDA from January 2018 to June 2022 in our institution were retrospectively recruited. Their hemodynamic parameters collected both by echocardiography and by cardiac catheterization were analyzed to delineate the influence of PDA size on the pulmonary vascular system. The echocardiographic-based ductal size and indexed PDA size were 1.93 mm (1.15–6 mm) and 4.05 mm/m2 (2.03–25.47 mm/m2), respectively. The pulmonary artery pressure measured was 20.83 mmHg (8–45 mmHg). We found a positive correlation between indexed PDA size and mean pulmonary arterial pressure (mPAP) (Pearson correlation coefficient = 0.47, p < 0.001). A subgroup analysis showed that 28 patients (53.8%) developed pulmonary hypertension (PH) (defined as mPAP > 20 mmHg). The median age of the PH group was 1.02 years [range: 0.19–8.64], which was significantly younger than the non-PH group's median age of 3.43 years [range: 0.42–19.96] (p = 0.001). The indexed PDA size for the PH group, 4.69 mm/m2, was significantly higher than that of the non-PH group, 3.2 mm/m2 (p = 0.004). The major risk factor for patients with PH was the PDA/BSA index, with an OR of 2.181 (95% CI, 1.224–3.887). Our demographic data showed younger patients with a higher PDA/BSA index are more likely to develop pulmonary hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author (W-LH).

Code Availability

Not applicable.

References

  1. Schneider DJ, Moore JW (2006) Patent ductus arteriosus. Circulation 114(17):1873–1882. https://doi.org/10.1161/circulationaha.105.592063

    Article  PubMed  Google Scholar 

  2. Schneider DJ (2012) The patent ductus arteriosus in term infants, children, and adults. Semin Perinatol 36(2):146–153. https://doi.org/10.1053/j.semperi.2011.09.025

    Article  PubMed  Google Scholar 

  3. Hoffman JIE, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900. https://doi.org/10.1016/S0735-1097(02)01886-7

    Article  PubMed  Google Scholar 

  4. Philip R, Lamba V, Talati A, Sathanandam S (2020) Pulmonary hypertension with prolonged patency of the ductus arteriosus in preterm infants. Children 7(9):139. https://doi.org/10.3390/children7090139

    Article  PubMed  PubMed Central  Google Scholar 

  5. Philip R, Nathaniel Johnson J, Naik R, Kimura D, Boston U, Chilakala S, Hendrickson B, Rush Waller B, Sathanandam S (2019) Effect of patent ductus arteriosus on pulmonary vascular disease. Congenit Heart Dis 14(1):37–41. https://doi.org/10.1111/chd.12702

    Article  PubMed  Google Scholar 

  6. Alpan G, Scheerer R, Bland R, Clyman R (1991) Patent ductus arteriosus increases lung fluid filtration in preterm lambs. Pediatr Res 30(6):616–621. https://doi.org/10.1203/00006450-199112000-00026

    Article  CAS  PubMed  Google Scholar 

  7. Chinawa JM, Chukwu BF, Chinawa AT, Duru CO (2021) The effects of ductal size on the severity of pulmonary hypertension in children with patent ductus arteriosus (PDA): a multi-center study. BMC Pulm Med 21(1):79. https://doi.org/10.1186/s12890-021-01449-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rong X, Ye Q, Wang Q, Wang J, Zhu Q, Chen Y, Wu R (2021) Post-interventional evaluation and follow-up in children with patent ductus arteriosus complicated with moderate to severe pulmonary arterial hypertension: a retrospective study. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.693414

    Article  PubMed  PubMed Central  Google Scholar 

  9. Feng J, Kong X, Sheng Y, Yang R (2016) Patent ductus arteriosus with persistent pulmonary artery hypertension after transcatheter closure. Ther Clin Risk Manag 12:1609–1613. https://doi.org/10.2147/tcrm.s112400

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang DZ, Zhu XY, Lv B, Cui CS, Han XM, Sheng XT, Wang QG, Zhang P (2014) Trial occlusion to assess the risk of persistent pulmonary arterial hypertension after closure of a large patent ductus arteriosus in adolescents and adults with elevated pulmonary artery pressure. Circ Cardiovasc Interv 7(4):473–481. https://doi.org/10.1161/circinterventions.113.001135

    Article  PubMed  Google Scholar 

  11. Bhalgat P, Pinto R, Dalvi B (2012) Transcatheter closure of large patent ductus arteriosus with severe pulmonary arterial hypertension: short and intermediate term results. Ann Pediatr Cardiol 5(2):135–140. https://doi.org/10.4103/0974-2069.99614

    Article  PubMed  PubMed Central  Google Scholar 

  12. Galiè N, McLaughlin VV, Rubin LJ, Simonneau G (2019) An overview of the 6th World symposium on pulmonary hypertension. Eur Respir J 53(1):1802148. https://doi.org/10.1183/13993003.02148-2018

    Article  PubMed  PubMed Central  Google Scholar 

  13. LaFarge CG, Miettinen OS (1970) The estimation of oxygen consumption1. Cardiovasc Res 4(1):23–30. https://doi.org/10.1093/cvr/4.1.23

    Article  CAS  PubMed  Google Scholar 

  14. Amsallem M, Bagherzadeh SP, Boulate D, Sweatt AJ, Kudelko KT, Sung YK, Feinstein JA, Fadel E, Mercier O, Denault A, Haddad F, Zamanian R (2020) Hemodynamic trajectories and outcomes in patients with pulmonary arterial hypertension. Pulm Circ 10(4):1–12. https://doi.org/10.1177/2045894020941343

    Article  Google Scholar 

  15. Ruth BK, Bilchick KC, Mysore MM, Mwansa H, Harding WC, Kwon Y, Kennedy JLW, Mazurek JA, Mihalek AD, Smith LA, Mejia-Lopez E, Parker AM, Welch TS, Mazimba S (2019) Increased pulmonary-systemic pulse pressure ratio is associated with increased mortality in group 1 pulmonary hypertension. Heart Lung Circ 28(7):1059–1066. https://doi.org/10.1016/j.hlc.2018.05.199

    Article  PubMed  Google Scholar 

  16. Schubert SA, Mehaffey JH, Booth A, Yarboro LT, Kern JA, Kennedy JLW, Ailawadi G, Mazimba S (2019) Pulmonary-systemic pressure ratio correlates with morbidity in cardiac valve surgery. J Cardiothorac Vasc Anesth 33(3):677–682. https://doi.org/10.1053/j.jvca.2018.08.190

    Article  PubMed  Google Scholar 

  17. Mazimba S, Schubert S, Solanki J, Mwansa H, Parker A, Kennedy JL, Bergin J, Mubanga M, Breathett K, Mejia-Lopez E, Abuannadi M, Bilchick KC (2017) Abstract 20172: increased pulmonary-systemic pressure ratio is associated with adverse events in advanced heart failure. Circulation. https://doi.org/10.1161/circ.136.suppl_1.20172

    Article  Google Scholar 

  18. Abman SH, Hansmann G, Archer SL, Ivy DD, Adatia I, Chung WK, Hanna BD, Rosenzweig EB, Raj JU, Cornfield D, Stenmark KR, Steinhorn R, Thébaud B, Fineman JR, Kuehne T, Feinstein JA, Friedberg MK, Earing M, Barst RJ, Keller RL, Kinsella JP, Mullen M, Deterding R, Kulik T, Mallory G, Humpl T, Wessel DL (2015) Pediatric pulmonary hypertension. Circulation 132(21):2037–2099. https://doi.org/10.1161/cir.0000000000000329

    Article  PubMed  Google Scholar 

  19. Su BH, Lin HY, Huang FK, Tsai ML, Huang YT (2016) Circulatory management focusing on preventing intraventricular hemorrhage and pulmonary hemorrhage in preterm infants. Pediatr Neonatol 57(6):453–462. https://doi.org/10.1016/j.pedneo.2016.01.001

    Article  PubMed  Google Scholar 

  20. Majed B, Bateman DA, Uy N, Lin F (2019) Patent ductus arteriosus is associated with acute kidney injury in the preterm infant. Pediatr Nephrol 34(6):1129–1139. https://doi.org/10.1007/s00467-019-4194-5

    Article  PubMed  Google Scholar 

  21. Hamrick SEG, Hansmann G (2010) Patent ductus arteriosus of the preterm infant. Pediatrics 125(5):1020–1030. https://doi.org/10.1542/peds.2009-3506

    Article  PubMed  Google Scholar 

  22. Hultgren H, Selzer A, Purdy A, Holman E, Gerbode F (1953) The syndrome of patent ductus arteriosus with pulmonary hypertension. Circulation 8(1):15–35. https://doi.org/10.1161/01.cir.8.1.15

    Article  CAS  PubMed  Google Scholar 

  23. Cosh JA (1953) Patent ductus arteriosus with pulmonary hypertension. Heart 15(4):423–429. https://doi.org/10.1136/hrt.15.4.423

    Article  CAS  Google Scholar 

  24. Anderson IM, Coles HMT (1955) Patent ductus arteriosus with pulmonary hypertension: a review of nine cases, including one with reversal of blood flow through the ductus. Thorax 10(4):338–347. https://doi.org/10.1136/thx.10.4.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hansmann G, Koestenberger M, Alastalo TP, Apitz C, Austin ED, Bonnet D, Budts W, D’Alto M, Gatzoulis MA, Hasan BS, Kozlik-Feldmann R, Kumar RK, Lammers AE, Latus H, Michel-Behnke I, Miera O, Morrell NW, Pieles G, Quandt D, Sallmon H, Schranz D, Tran-Lundmark K, Tulloh RMR, Warnecke G, Wåhlander H, Weber SC, Zartner P (2019) 2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: the European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT. J Heart Lung Transplant 38(9):879–901. https://doi.org/10.1016/j.healun.2019.06.022

    Article  PubMed  Google Scholar 

  26. Eppinger EC, Burwell CS, Gross RE (1941) The effects of the patent ductus arteriosus on the circulation 1. J Clin Investig 20(2):127–143. https://doi.org/10.1172/jci101205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miranda WR, Aboulhosn JA, Hagler DJ (2022) Catheterization in adults with congenital heart disease: a primer for the noncongenital proceduralist. JACC Cardiovasc Interv 15(9):907–921. https://doi.org/10.1016/j.jcin.2021.12.020

    Article  PubMed  Google Scholar 

  28. Iyer P, Evans N (1994) Re-evaluation of the left atrial to aortic root ratio as a marker of patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed 70(2):F112-117. https://doi.org/10.1136/fn.70.2.f112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu T, Chen Z, Ma X, Shi L (2022) Predictive tool for closure of ductus arteriosus with pharmacologic or surgical treatment in preterm infants. Pediatr Cardiol 43(2):373–381. https://doi.org/10.1007/s00246-021-02731-w

    Article  PubMed  Google Scholar 

  30. Kiran VS, Tiwari A (2018) Prediction of left ventricular dysfunction after device closure of patent ductus arteriosus: proposal for a new functional classification. EuroIntervention 13:2124–2129

    Article  Google Scholar 

  31. Kim YH, Choi HJ, Cho Y, Lee SB, Hyun MC (2008) Transient left ventricular dysfunction after percutaneous patent ductus arteriosus closure in children. Korean Circ J 38(11):596–600. https://doi.org/10.4070/kcj.2008.38.11.596

    Article  Google Scholar 

  32. Takahashi Y, Harada K, Ishida A, Tamura M, Tanaka T, Takada G (1996) Changes in left ventricular volume and systolic function before and after the closure of ductus arteriosus in full-term infants. Early Hum Dev 44(1):77–85. https://doi.org/10.1016/0378-3782(95)01695-3

    Article  CAS  PubMed  Google Scholar 

  33. Jeong YH, Yun TJ, Song JM, Park JJ, Seo DM, Koh JK, Lee SW, Kim MJ, Kang DH, Song JK (2007) Left ventricular remodeling and change of systolic function after closure of patent ductus arteriosus in adults: device and surgical closure. Am Heart J 154(3):436–440. https://doi.org/10.1016/j.ahj.2007.04.045

    Article  PubMed  Google Scholar 

  34. Nagata H, Ihara K, Yamamura K, Tanoue Y, Shiokawa Y, Tominaga R, Hara T (2013) Left ventricular efficiency after ligation of patent ductus arteriosus for premature infants. J Thorac Cardiovasc Surg 146(6):1353–1358. https://doi.org/10.1016/j.jtcvs.2013.02.019

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the experienced echocardiograph technicians Hisu-Chin Peng and Lin-Ya Hung for their expertise and dedication to patients.

Funding

No funding was secured for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. PWW and WLH: contributed to material preparation, data collection, and analysis. PWW: contributed to writing the first draft of the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei-Li Hung.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical Approval

The study was approved by the institutional ethics committee (22MMHIS211e), and the requirement of written consent was waived.

Consent to Participate

Informed consent was waived because of the retrospective and noninvasive study design.

Consent for Publish

All the authors transfer, assign, or otherwise convey all copyright ownership, including any and all rights exclusively to the journal, in the event that such work is published by the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PW., Yeh, SJ., Lee, PC. et al. Hemodynamic and Echocardiographic Characteristics and the Presence of Pulmonary Hypertension in Patent Ductus Arteriosus Patients who Underwent Transcatheter Closure. Pediatr Cardiol 44, 1262–1270 (2023). https://doi.org/10.1007/s00246-023-03157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-023-03157-2

Keywords

Navigation