Skip to main content

Advertisement

Log in

Risk Factors for Tube Feeding at Discharge in Infants Undergoing Neonatal Surgery for Congenital Heart Disease: A Systematic Review

  • Review
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Approximately 30–50% of infants undergoing neonatal surgery for congenital heart disease (CHD) cannot meet oral feeding goals by discharge and require feeding tube support at home. Feeding tubes are associated with increased readmission rates and consequent hospital, payer, and family costs, and are a burden for family caregivers. Identification of modifiable risk factors for oral feeding problems could support targeted care for at-risk infants. Therefore, the aim of this systematic review is to determine risk factors for tube feeding at discharge in infants undergoing neonatal surgery for CHD. Following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, a search was conducted using MEDLINE, CINAHL, and Cochrane Database of Systematic Reviews. Studies published before 2010 were excluded. The search resulted in 607 records, of which 18 were included. Studies were primarily retrospective cohort designs and results were often inconsistent. Study quality was assessed using the Joanna Briggs Critical Appraisal Tools. As a group, the studies exhibited substantial risk for bias. Based on the findings, infants who struggle with feeding preoperatively, experience increased nil per os duration and/or low oral feeding volume postoperatively, experience increased duration of mechanical ventilation, or have vocal cord dysfunction may be at risk for tube feeding at hospital discharge. Factors warranting further examination include cardiac physiology (e.g., aortic arch obstruction) and the relationship between neurodevelopment and oral feeding. Clinicians should use caution in assuming risk for an individual and prioritize early implementation of interventions that facilitate oral feeding development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ghanayem NS, Allen KR, Tabbutt S et al (2012) Interstage mortality after the Norwood procedure: results of the multicenter single ventricle reconstruction trial. J Thorac Cardiovasc Surg 144:896–906. https://doi.org/10.1016/j.jtcvs.2012.05.020

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mitting R, Marino L, Macrae D et al (2015) Nutritional status and clinical outcome in postterm neonates undergoing surgery for congenital heart disease. Pediatr Crit Care Med 16:448–452. https://doi.org/10.1097/PCC.0000000000000402

    Article  PubMed  Google Scholar 

  3. Kelleher DK, Laussen P, Teixeira-Pinto A, Duggan C (2006) Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 Norwood procedure. Nutrition 22:237–244. https://doi.org/10.1016/j.nut.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  4. Alten JA, Rhodes LA, Tabbutt S et al (2015) Perioperative feeding management of neonates with CHD: analysis of the pediatric cardiac critical care consortium (PC4) registry. Cardiol Young 25:1593–1601. https://doi.org/10.1017/S1047951115002474

    Article  PubMed  Google Scholar 

  5. Natarajan G, Reddy Anne S, Aggarwal S (2010) Enteral feeding of neonates with congenital heart disease. Neonatology 98:330–336. https://doi.org/10.1159/000285706

    Article  PubMed  Google Scholar 

  6. Uzark K, Wang Y, Rudd N et al (2012) Interstage feeding and weight gain in infants following the Norwood operation: can we change the outcome? Cardiol Young 22:520–527. https://doi.org/10.1017/S1047951111002083

    Article  PubMed  Google Scholar 

  7. Azhar A (2019) Unplanned hospital readmissions following congenital heart diseases surgery. Prevalence and predictors. Saudi Med J 40:802–809. https://doi.org/10.15537/smj.2019.8.24405

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kogon B, Jain A, Oster M et al (2012) Risk factors associated with readmission after pediatric cardiothoracic surgery. Ann Thorac Surg 94:865–873. https://doi.org/10.1016/j.athoracsur.2012.04.025

    Article  PubMed  Google Scholar 

  9. Saharan S, Legg AT, Armsby LB et al (2014) Causes of readmission after operation for congenital heart disease. Ann Thorac Surg 98:1667–1673. https://doi.org/10.1016/j.athoracsur.2014.05.043

    Article  PubMed  Google Scholar 

  10. Di Maria MV, Glatz AC, Ravishankar C et al (2013) Supplemental tube feeding does not mitigate weight loss in infants with shunt-dependent single-ventricle physiology. Pediatr Cardiol 34:1350–1356. https://doi.org/10.1007/s00246-013-0648-x

    Article  PubMed  Google Scholar 

  11. Elgersma KM, McKechnie AC, Gallagher T et al (2020) Feeding infants with complex congenital heart disease: a modified Delphi survey to examine potential research and practice gaps. Cardiol Young. https://doi.org/10.1017/S1047951120004370

    Article  PubMed  PubMed Central  Google Scholar 

  12. Radman M, Mack R, Barnoya J et al (2014) The effect of preoperative nutritional status on postoperative outcomes in children undergoing surgery for congenital heart defects in San Francisco (UCSF) and Guatemala City (UNICAR). J Thorac Cardiovasc Surg 147:442–450. https://doi.org/10.1016/j.jtcvs.2013.03.023

    Article  PubMed  Google Scholar 

  13. Eskedal LT, Hagemo PS, Seem E et al (2008) Impaired weight gain predicts risk of late death after surgery for congenital heart defects. Arch Dis Child 93:495–501. https://doi.org/10.1136/adc.2007.126219

    Article  CAS  PubMed  Google Scholar 

  14. Hartman DM, Medoff-Cooper B (2012) Transition to home after neonatal surgery for congenital heart disease. MCN Am J Matern Nurs 37:95–100. https://doi.org/10.1097/NMC.0b013e318241dac1

    Article  Google Scholar 

  15. Tregay J, Wray J, Crowe S et al (2016) Going home after infant cardiac surgery: a UK qualitative study. Arch Dis Child 101:320–325. https://doi.org/10.1136/archdischild-2015-308827

    Article  PubMed  Google Scholar 

  16. Taylor AM, Cloherty M, Alexander J et al (2009) Parental distress around supplementing breastfed babies using nasogastric tubes on the post-natal ward: a theme from an ethnographic study. Matern Child Nutr 5:117–124. https://doi.org/10.1111/j.1740-8709.2008.00165.x

    Article  PubMed  Google Scholar 

  17. Pridham KF, Melby J, Connor A (2021) Parents’ interactive problem solving concerning caregiving of an infant with complex congenital heart disease and the parenting relationship. In: Midwest Nursing Research Society Conference, Des Moines, IA

  18. Hill G, Silverman A, Noel R, Bartz PJ (2014) Feeding dysfunction in single ventricle patients with feeding disorder. Congenit Heart Dis 9:26–29. https://doi.org/10.1111/chd.12071

    Article  PubMed  Google Scholar 

  19. Wilken M (2012) The impact of child tube feeding on maternal emotional state and identity: a qualitative meta-analysis. J Pediatr Nurs 27:248–255. https://doi.org/10.1016/j.pedn.2011.01.032

    Article  PubMed  Google Scholar 

  20. Tume LN, Balmaks R, da Cruz E et al (2018) Enteral feeding practices in infants with congenital heart disease across European PICUs: a European Society of Pediatric and Neonatal Intensive Care survey. Pediatr Crit Care Med 19:137–144. https://doi.org/10.1097/PCC.0000000000001412

    Article  PubMed  Google Scholar 

  21. Slicker J, Sables-Baus S, Lambert LM et al (2016) Perioperative feeding approaches in single ventricle infants: a survey of 46 centers. Congenit Heart Dis 11:707–715. https://doi.org/10.1111/chd.12390

    Article  PubMed  Google Scholar 

  22. Lauver DR, Ward SE, Heidrich SM et al (2002) Patient-centered interventions. Res Nurs Health 25:246–255. https://doi.org/10.1002/nur.10044

    Article  PubMed  Google Scholar 

  23. Berry AE, Ghanayem NS, Guffey D et al (2021) Variables prevalent among early unplanned readmissions in infants following congenital heart surgery. Pediatr Cardiol 42:1449–1456. https://doi.org/10.1007/s00246-021-02631-z

    Article  PubMed  Google Scholar 

  24. Gooding JS, Cooper LG, Blaine AI et al (2011) Family support and family-centered care in the neonatal intensive care unit: origins, advances, impact. Semin Perinatol 35:20–28. https://doi.org/10.1053/j.semperi.2010.10.004

    Article  PubMed  Google Scholar 

  25. Kuhlthau KA, Bloom S, Van Cleave J et al (2011) Evidence for family-centered care for children with special health care needs: a systematic review. Acad Pediatr 11:136-143.e8. https://doi.org/10.1016/j.acap.2010.12.014

    Article  PubMed  Google Scholar 

  26. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5:210. https://doi.org/10.1186/s13643-016-0384-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pierick AR, Pierick TA, Reinking BE (2020) Comparison of growth and feeding method in infants with and without genetic abnormalities after neonatal cardiac surgery. Cardiol Young 30:1826–1832. https://doi.org/10.1017/S1047951120002887

    Article  PubMed  Google Scholar 

  29. Einarson KD, Arthur HM (2003) Predictors of oral feeding difficulty in cardiac surgical infants. Pediatr Nurs 29:315–319

    PubMed  Google Scholar 

  30. Kogon BE, Ramaswamy V, Todd K et al (2007) Feeding difficulty in newborns following congenital heart surgery. Congenit Heart Dis 2:332–337. https://doi.org/10.1111/j.1747-0803.2007.00121.x

    Article  PubMed  Google Scholar 

  31. Joanna Briggs Institute Critical Appraisal Tools. https://jbi.global/critical-appraisal-tools. Accessed 4 May 2021

  32. Lambert LM, Pike NA, Medoff-Cooper B et al (2014) Variation in feeding practices following the Norwood procedure. J Pediatr 164:237-242.e1. https://doi.org/10.1016/j.jpeds.2013.09.042

    Article  PubMed  Google Scholar 

  33. McKean EB, Kasparian NA, Batra S et al (2017) Feeding difficulties in neonates following cardiac surgery: determinants of prolonged feeding-tube use. Cardiol Young 27:1203–1211. https://doi.org/10.1017/S1047951116002845

    Article  PubMed  Google Scholar 

  34. Ehrmann DE, Mulvahill M, Harendt S et al (2018) Toward standardization of care: the feeding readiness assessment after congenital cardiac surgery. Congenit Heart Dis 13:31–37. https://doi.org/10.1111/chd.12550

    Article  PubMed  Google Scholar 

  35. Piggott KD, Babb J, Yong S et al (2018) Risk factors for gastrostomy tube placement in single ventricle patients following the Norwood procedure. Semin Thorac Cardiovasc Surg 30:443–447. https://doi.org/10.1053/j.semtcvs.2018.02.012

    Article  PubMed  Google Scholar 

  36. Sables-Baus S, Kaufman J, Cook P, da Cruz EM (2012) Oral feeding outcomes in neonates with congenital cardiac disease undergoing cardiac surgery. Cardiol Young 22:42–48. https://doi.org/10.1017/S1047951111000850

    Article  PubMed  Google Scholar 

  37. Davies RR, Carver SW, Schmidt R et al (2013) Gastrointestinal complications after stage I Norwood versus hybrid procedures. Ann Thorac Surg 95:189–196. https://doi.org/10.1016/j.athoracsur.2012.05.130

    Article  PubMed  Google Scholar 

  38. Gakenheimer-Smith L, Glotzbach K, Ou Z et al (2019) The impact of neurobehavior on feeding outcomes in neonates with congenital heart disease. J Pediatr 214:71-78.e2. https://doi.org/10.1016/j.jpeds.2019.06.047

    Article  PubMed  PubMed Central  Google Scholar 

  39. Averin K, Uzark K, Beekman RH et al (2012) Postoperative assessment of laryngopharyngeal dysfunction in neonates after Norwood operation. Ann Thorac Surg 94:1257–1261. https://doi.org/10.1016/j.athoracsur.2012.01.009

    Article  PubMed  Google Scholar 

  40. Dewan K, Cephus C, Owczarzak V, Ocampo E (2012) Incidence and implication of vocal fold paresis following neonatal cardiac surgery. Laryngoscope 122:2781–2785. https://doi.org/10.1002/lary.23575

    Article  PubMed  Google Scholar 

  41. Kurtz JD, Chowdhury SM, Woodard FK et al (2019) Factors associated with delayed transition to oral feeding in infants with single ventricle physiology. J Pediatr 211:134–138. https://doi.org/10.1016/j.jpeds.2019.02.030

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pourmoghadam KK, DeCampli WM, Ruzmetov M et al (2017) Recurrent laryngeal nerve injury and swallowing dysfunction in neonatal aortic arch repair. Ann Thorac Surg 104:1611–1618. https://doi.org/10.1016/j.athoracsur.2017.03.080

    Article  PubMed  Google Scholar 

  43. Milligan C, Mills KI, Ge S et al (2022) Cardiovascular intensive care unit variables inform need for feeding tube utilization in infants with hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2022.04.044

    Article  PubMed  Google Scholar 

  44. Lopez NL, Gowda C, Backes CH et al (2018) Differences in midterm outcomes in infants with hypoplastic left heart syndrome diagnosed with necrotizing enterocolitis: NPCQIC database analysis. Congenit Heart Dis 13:512–518. https://doi.org/10.1111/chd.12602

    Article  PubMed  Google Scholar 

  45. Hsieh A, Tabbutt S, Xu D et al (2019) Impact of perioperative brain injury and development on feeding modality in infants with single ventricle heart disease. J Am Heart Assoc. https://doi.org/10.1161/JAHA.119.012291

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lambert A, Winlaw DS, Deacon V et al (2020) Routine vocal cord mobility assessment post cardiac surgery via median sternotomy approach. Int J Pediatr Otorhinolaryngol 138:110331. https://doi.org/10.1016/j.ijporl.2020.110331

    Article  PubMed  Google Scholar 

  47. Indramohan G, Pedigo TP, Rostoker N et al (2017) Identification of risk factors for poor feeding in infants with congenital heart disease and a novel approach to improve oral feeding. J Pediatr Nurs 35:149–154. https://doi.org/10.1016/j.pedn.2017.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jacobs JP, Mayer JE, Mavroudis C et al (2016) The Society of Thoracic Surgeons congenital heart surgery database: 2016 update on outcomes and quality. Ann Thorac Surg 101:850–862. https://doi.org/10.1016/j.athoracsur.2016.01.057

    Article  PubMed  Google Scholar 

  49. Lacour-Gayet F, Clarke D, Jacobs J et al (2004) The Aristotle score for congenital heart surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 7:185–191. https://doi.org/10.1053/j.pcsu.2004.02.011

    Article  PubMed  Google Scholar 

  50. American Heart Association Common types of heart defects. https://www.heart.org/en/health-topics/congenital-heart-defects/about-congenital-heart-defects/common-types-of-heart-defects. Accessed 4 Jul 2021

  51. Centers for Disease Control and Prevention (2018) Data and statistics on congenital heart defects. In: Cent. Dis. Control Prev. https://www.cdc.gov/ncbddd/heartdefects/data.html. Accessed 30 May 2019

  52. Carlo WF, Kimball TR, Michelfelder EC, Border WL (2007) Persistent diastolic flow reversal in abdominal aortic Doppler-flow profiles is associated with an increased risk of necrotizing enterocolitis in term infants with congenital heart disease. Pediatrics 119:330–335. https://doi.org/10.1542/peds.2006-2640

    Article  PubMed  Google Scholar 

  53. Miller TA, Minich LL, Lambert LM et al (2014) Abnormal abdominal aorta hemodynamics are associated with necrotizing enterocolitis in infants with hypoplastic left heart syndrome. Pediatr Cardiol 35:616–621. https://doi.org/10.1007/s00246-013-0828-8

    Article  PubMed  Google Scholar 

  54. Chaves AH, Baker-Smith CM, Rosenthal GL (2020) Arch intervention following stage 1 palliation in hypoplastic left heart syndrome is associated with slower feed advancement: a report from the National Pediatric Quality Cardiology Improvement Collaborative. Cardiol Young 30:396–401. https://doi.org/10.1017/S1047951120000177

    Article  PubMed  Google Scholar 

  55. Becker K, Hornik C, Cotten C et al (2014) Necrotizing enterocolitis in infants with ductal-dependent congenital heart disease. Am J Perinatol 32:633–638

    Article  PubMed  PubMed Central  Google Scholar 

  56. Davis D, Davis S, Cotman K et al (2008) Feeding difficulties and growth delay in children with hypoplastic left heart syndrome versus d-transposition of the great arteries. Pediatr Cardiol 29:328–333. https://doi.org/10.1007/s00246-007-9027-9

    Article  CAS  PubMed  Google Scholar 

  57. St. Pierre A, Khattra P, Johnson M et al (2010) Content validation of the infant malnutrition and feeding checklist for congenital heart disease: a tool to identify risk of malnutrition and feeding difficulties in infants with congenital heart disease. J Pediatr Nurs 25:367–374. https://doi.org/10.1016/j.pedn.2009.04.009

    Article  PubMed  Google Scholar 

  58. Cooper-Brown L, Copeland S, Dailey S et al (2008) Feeding and swallowing dysfunction in genetic syndromes. Dev Disabil Res Rev 14:147–157. https://doi.org/10.1002/ddrr.19

    Article  PubMed  Google Scholar 

  59. Stanley MA, Shepherd N, Duvall N et al (2019) Clinical identification of feeding and swallowing disorders in 0–6 month old infants with down syndrome. Am J Med Genet A 179:177–182. https://doi.org/10.1002/ajmg.a.11

    Article  PubMed  Google Scholar 

  60. Cavalcanti PEF, de Oliveira Sá MPB, dos Santos CA et al (2015) Stratification of complexity in congenital heart surgery: comparative study of the Risk Adjustment for Congenital Heart Surgery (RACHS-1) method, Aristotle basic score and Society of Thoracic Surgeons-European Association for Cardio-Thoracic Surgery (STS-EACTS) mortality score. Rev Bras Cir Cardiovasc. https://doi.org/10.5935/1678-9741.20150001

    Article  PubMed  PubMed Central  Google Scholar 

  61. Holst LM, Serrano F, Shekerdemian L et al (2019) Impact of feeding mode on neurodevelopmental outcome in infants and children with congenital heart disease. Congenit Heart Dis 14:1207–1213. https://doi.org/10.1111/chd.12827

    Article  PubMed  Google Scholar 

  62. Yi S-H, Kim S-J, Huh J et al (2013) Dysphagia in infants after open heart procedures. Am J Phys Med Rehabil 92:496–503. https://doi.org/10.1097/PHM.0b013e31828763f4

    Article  PubMed  Google Scholar 

  63. Fucile S, Samdup D, MacFarlane V, Sinclair MA (2022) Risk factors associated with long-term feeding problems in preterm infants: a scoping review. Adv Neonatal Care 22:161–169. https://doi.org/10.1097/ANC.0000000000000864

    Article  PubMed  Google Scholar 

  64. Hoffmeister J, Zaborek N, Thibeault SL (2019) Postextubation dysphagia in pediatric populations: Incidence, risk factors, and outcomes. J Pediatr 211:126-133.e1. https://doi.org/10.1016/j.jpeds.2019.02.019

    Article  PubMed  Google Scholar 

  65. Sundararajan S, Pay F, Mangione M et al (2021) Predictors of gastrostomy tube in infants with complex congenital heart disease. Pediatric Academic Societies 2021, Virtual. https://virtual2021.pas-meeting.org/fsPopup.asp

  66. Jadcherla SR, Vijayapal AS, Leuthner S (2009) Feeding abilities in neonates with congenital heart disease: a retrospective study. J Perinatol 29:112–118. https://doi.org/10.1038/jp.2008.136

    Article  CAS  PubMed  Google Scholar 

  67. Lundine JP, Dempster R, Carpenito K et al (2018) Incidence of aspiration in infants with single-ventricle physiology following hybrid procedure. Congenit Heart Dis 13:706–712. https://doi.org/10.1111/chd.12636

    Article  PubMed  Google Scholar 

  68. Alghamdi AA, Singh SK, Hamilton BCS et al (2010) Early extubation after pediatric cardiac surgery: systematic review, meta-analysis, and evidence-based recommendations. J Card Surg 25:586–595. https://doi.org/10.1111/j.1540-8191.2010.01088.x

    Article  PubMed  Google Scholar 

  69. Faraoni D, Ng WCK (2020) Pro: early extubation after pediatric cardiac surgery. J Cardiothorac Vasc Anesth 34:2539–2541. https://doi.org/10.1053/j.jvca.2020.05.025

    Article  PubMed  Google Scholar 

  70. Yamasaki Y, Shime N, Miyazaki T et al (2011) Fast-track postoperative care for neonatal cardiac surgery: a single-institute experience. J Anesth 25:321–329. https://doi.org/10.1007/s00540-011-1130-7

    Article  PubMed  Google Scholar 

  71. Kataria-Hale J, Osborne SW, Hair A et al (2019) Preoperative feeds in ductal-dependent cardiac disease: a systematic review and meta-analysis. Hosp Pediatr 9:998–1006. https://doi.org/10.1542/hpeds.2019-0111

    Article  PubMed  Google Scholar 

  72. National Pediatric Cardiology Quality Improvement Collaborative (n.d.) Oral feeding pre stage 1 palliation project. https://www.npcqic.org/preoperative-feeding. Accessed 15 Sep 2022

  73. Goldstein SA, Watkins KJ, Lowery RE et al (2022) Oral aversion in infants with congenital heart disease: a single-center retrospective cohort study. Pediatr Crit Care Med 23:e171–e179. https://doi.org/10.1097/PCC.0000000000002879

    Article  PubMed  Google Scholar 

  74. Gorantla SC, Chan T, Shen I et al (2019) Current epidemiology of vocal cord dysfunction after congenital heart surgery in young infants. Pediatr Crit Care Med 20:817–825. https://doi.org/10.1097/PCC.0000000000002010

    Article  PubMed  Google Scholar 

  75. Karsch E, Irving SY, Aylward BS, Mahle WT (2017) The prevalence and effects of aspiration among neonates at the time of discharge. Cardiol Young 27:1241–1247. https://doi.org/10.1017/S104795111600278X

    Article  PubMed  Google Scholar 

  76. de Souza PC, Gigoski VS, Etges CL, da Rosa Barbosa L (2018) Findings of postoperative clinical assessment of swallowing in infants with congenital heart defect. CoDAS. https://doi.org/10.1590/2317-1782/20182017024

    Article  PubMed  Google Scholar 

  77. Merlo G, Suna JM, McIntosh A et al (2022) Implementation of a novel vocal cord dysfunction management pathway using the consolidated framework for implementation research. Cardiol Young 32:775–781. https://doi.org/10.1017/S1047951121003073

    Article  PubMed  Google Scholar 

  78. Mussatto KA, Hoffmann RG, Hoffman GM et al (2014) Risk and prevalence of developmental delay in young children with congenital heart disease. Pediatrics 133:e570-577. https://doi.org/10.1542/peds.2013-2309

    Article  PubMed  PubMed Central  Google Scholar 

  79. Khalil A, Bennet S, Thilaganathan B et al (2016) Prevalence of prenatal brain abnormalities in fetuses with congenital heart disease: a systematic review. Ultrasound Obstet Gynecol 48:296–307. https://doi.org/10.1002/uog.15932

    Article  CAS  PubMed  Google Scholar 

  80. Licht DJ, Shera DM, Clancy RR et al (2009) Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 137:529–537. https://doi.org/10.1016/j.jtcvs.2008.10.025

    Article  PubMed  PubMed Central  Google Scholar 

  81. Harrison TM (2019) Improving neurodevelopment in infants with complex congenital heart disease. Birth Defects Res 111:1128–1140. https://doi.org/10.1002/bdr2.1517

    Article  CAS  PubMed  Google Scholar 

  82. Shaker C (2017) Infant-guided, co-regulated feeding in the neonatal intensive care unit. Part I: Theoretical underpinnings for neuroprotection and safety. Semin Speech Lang 38:096–105. https://doi.org/10.1055/s-0037-1599107

    Article  Google Scholar 

  83. Best KE, Vieira R, Glinianaia SV, Rankin J (2019) Socio-economic inequalities in mortality in children with congenital heart disease: a systematic review and meta-analysis. Paediatr Perinat Epidemiol 33:291–309. https://doi.org/10.1111/ppe.12564

    Article  PubMed  Google Scholar 

  84. Peyvandi S, Baer RJ, Moon-Grady AJ et al (2018) Socioeconomic mediators of racial and ethnic disparities in congenital heart disease outcomes: a population-based study in California. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.010342

    Article  PubMed  PubMed Central  Google Scholar 

  85. Xiang L, Su Z, Liu Y et al (2019) Impact of family socioeconomic status on health-related quality of life in children with critical congenital heart disease. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.010616

    Article  PubMed  PubMed Central  Google Scholar 

  86. Aykanat Girgin B, Gözen D, Temizsoy E (2021) The effect of training on neonatal nurses’ knowledge about transitioning preterm infants to oral feeding. J Pediatr Nurs 61:185–190. https://doi.org/10.1016/j.pedn.2021.05.019

    Article  PubMed  Google Scholar 

  87. Spatz DL (2018) Beyond BFHI: The Spatz 10-step and breastfeeding resource nurse model to improve human milk and breastfeeding outcomes. J Perinat Neonatal Nurs 32:164–174. https://doi.org/10.1097/JPN.0000000000000339

    Article  PubMed  Google Scholar 

  88. Jones C, Winder M, Ou Z et al (2022) Feeding outcomes in post-discharge feeding clinic for infants following cardiac surgery. Cardiol Young 32:628–635. https://doi.org/10.1017/S1047951121002833

    Article  PubMed  Google Scholar 

  89. Slater N, Spader M, Fridgen J et al (2021) Weaning from a feeding tube in children with congenital heart disease: a review of the literature. Prog Pediatr Cardiol 62:101406. https://doi.org/10.1016/j.ppedcard.2021.101406

    Article  Google Scholar 

  90. National Pediatric Cardiology Quality Improvement Collaborative Tube weaning project. https://www.npcqic.org/tube-weaning. Accessed 16 Aug 2022

  91. Kuo DZ, Bird TM, Tilford JM (2011) Associations of family-centered care with health care outcomes for children with special health care needs. Matern Child Health J 15:794–805. https://doi.org/10.1007/s10995-010-0648-x

    Article  PubMed  Google Scholar 

  92. Tregay J, Brown K, Crowe S et al (2017) “I was so worried about every drop of milk”—feeding problems at home are a significant concern for parents after major heart surgery in infancy. Matern Child Nutr 13:e12302. https://doi.org/10.1111/mcn.12302

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Liz Weinfurter, MLIS, Associate Librarian, Health Sciences Library, University of Minnesota, for her assistance with the search.

Funding

This research did not receive any funding or financial support.

Author information

Authors and Affiliations

Authors

Contributions

KME and ACM formulated the review question. KME and ALT performed the literature search and study selection; KME and SJP performed data extraction; KME, MOW, LRT, and ACM assessed the quality of the included studies. KME drafted the manuscript. All authors revised, reviewed, and approved the final manuscript.

Corresponding author

Correspondence to Kristin M. Elgersma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study did not require ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgersma, K.M., Trebilcock, A.L., Whipple, M.O. et al. Risk Factors for Tube Feeding at Discharge in Infants Undergoing Neonatal Surgery for Congenital Heart Disease: A Systematic Review. Pediatr Cardiol 44, 769–794 (2023). https://doi.org/10.1007/s00246-022-03049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-022-03049-x

Keywords

Navigation