Skip to main content
Log in

Evaluating the Longevity of the Fontan Pathway

  • Review Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Children born with single ventricle physiology who undergo Fontan palliation face a diverse set of long-term complications. However, patient follow-up has in large part been limited to single institutional experiences without uniform application of diagnostic modalities to screen for relevant outcomes. Additionally, the use of different graft materials and variable surgical technique as part of the Fontan procedure has further complicated the evaluation of single ventricle patients. The purpose of this review is to define the changes in the Fontan pathway specific to the graft material used and its relationship to patient outcomes. As a means of introduction, we briefly review the historical evolution of the Fontan procedure with a focus on the intent behind design changes and incorporation of different biomaterials. We further delineate changes to the Fontan pathway which include the development of stenosis, differential growth, thrombosis, and calcification. Ultimately, the recognition of the changes noted within the Fontan pathway need to be assessed relative to their impact on patient hemodynamics, functional capacity, and Fontan-associated comorbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Deshaies C, Hamilton RM, Shohoudi A et al (2019) Thromboembolic risk after atriopulmonary, lateral tunnel, and extracardiac conduit fontan surgery. J Am Coll Cardiol 74(8):1071–1081. https://doi.org/10.1016/j.jacc.2019.06.051

    Article  PubMed  Google Scholar 

  2. Lastinger L, Zaidi AN (2013) The adult with a fontan: a panacea without a cure? Review of long-term complications Circ J 77(11):2672–2681. https://doi.org/10.1253/circj.cj-13-1105

    Article  PubMed  Google Scholar 

  3. Frigiola A, Lo RM (2017) Late complications of Fontan operation. G Ital Cardiol (Rome) 18(9):625–630. https://doi.org/10.1714/2741.27945

    Article  Google Scholar 

  4. Ohuchi H, Yasuda K, Miyazaki A et al (2015) Prevalence and predictors of haemostatic complications in 412 Fontan patients: their relation to anticoagulation and haemodynamics. Eur J Cardiothorac Surg 47(3):511–519. https://doi.org/10.1093/ejcts/ezu145

    Article  PubMed  Google Scholar 

  5. Ordonez M, Tulloh R (2020) Can we avoid the complications of the Fontan operation in those with suboptimal anatomy? Int J Cardiol 302:43–44. https://doi.org/10.1016/j.ijcard.2019.12.007

    Article  PubMed  Google Scholar 

  6. De Vadder K, Van De Bruaene A, Gewillig M, Meyns B, Troost E, Budts W (2014) Predicting outcome after Fontan palliation: a single-centre experience, using simple clinical variables. Acta Cardiol 69(1):7–14. https://doi.org/10.1080/ac.69.1.3011339

    Article  PubMed  Google Scholar 

  7. Gewillig M (2005) The Fontan circulation. Heart 91(6):839–846. https://doi.org/10.1136/hrt.2004.051789

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gewillig M (1994) The Fontan circulation: late functional results. Semin Thorac Cardiovasc Surg 6(1):56–63

    CAS  PubMed  Google Scholar 

  9. Gewillig M, Brown SC (2016) The Fontan circulation after 45 years: update in physiology. Heart 102(14):1081–1086. https://doi.org/10.1136/heartjnl-2015-307467

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gewillig M, Goldberg DJ (2014) Failure of the fontan circulation. Heart Fail Clin 10(1):105–116. https://doi.org/10.1016/j.hfc.2013.09.010

    Article  PubMed  Google Scholar 

  11. Pundi KN, Johnson JN, Dearani JA et al (2015) 40-Year Follow-Up After the Fontan Operation: Long-Term Outcomes of 1,052 Patients. J Am Coll Cardiol 66(15):1700–1710. https://doi.org/10.1016/j.jacc.2015.07.065

    Article  PubMed  Google Scholar 

  12. Fredenburg TB, Johnson TR, Cohen MD (2011) The Fontan procedure: anatomy, complications, and manifestations of failure. Radiographics 31(2):453–463. https://doi.org/10.1148/rg.312105027

    Article  PubMed  Google Scholar 

  13. Hagler DJ, Miranda WR, Haggerty BJ et al (2019) Fate of the Fontan connection: Mechanisms of stenosis and management. Congenit Heart Dis 14(4):571–581. https://doi.org/10.1111/chd.12757

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26(3):240–248. https://doi.org/10.1136/thx.26.3.240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Backer CL, Mavroudis C (2019) 149 Fontan Conversions. Methodist Debakey Cardiovasc J 15(2):105–110. https://doi.org/10.14797/mdcj-15-2-105

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deal BJ, Jacobs ML (2012) Management of the failing Fontan circulation. Heart 98(14):1098–1104. https://doi.org/10.1136/heartjnl-2011-301133

    Article  PubMed  PubMed Central  Google Scholar 

  17. Puga FJCM, Hagler DJ (1987) Modifications of the Fontan operation application to patients with left atrioventricular valve atresia or single atrioventricular valve. Circulation 76:11153–11160

    Google Scholar 

  18. Jonas RA, Castaneda AR (1988) Modified Fontan procedure: atrial baffle and systemic venous to pulmonary artery anastomotic techniques. J Card Surg 3(2):91–96. https://doi.org/10.1111/j.1540-8191.1988.tb00228.x

    Article  CAS  PubMed  Google Scholar 

  19. de Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection a logical alternative to atriopulmonary connection for complex Fontan operations Experimental studies and early clinical experience. J Thorac Cardiovasc Surg 96(5):682–695

    Article  Google Scholar 

  20. Marcelletti C, Corno A, Giannico S, Marino B (1990) Inferior vena cava-pulmonary artery extracardiac conduit A new form of right heart bypass. J Thorac Cardiovasc Surg 100(2):228–232

    Article  CAS  Google Scholar 

  21. Monro JL, Salmon AP, Keeton BR (1993) The outcome of antibiotic sterilised aortic homografts used in the Fontan procedure. Eur J Cardiothorac Surg 7(7):360–363. https://doi.org/10.1016/1010-7940(93)90067-l

    Article  CAS  PubMed  Google Scholar 

  22. van Brakel TJ, Schoof PH, de Roo F, Nikkels PG, Evens FC, Haas F (2014) High incidence of Dacron conduit stenosis for extracardiac Fontan procedure. J Thorac Cardiovasc Surg 147(5):1568–1572. https://doi.org/10.1016/j.jtcvs.2013.07.013

    Article  PubMed  Google Scholar 

  23. Backer CL, Deal BJ, Kaushal S, Russell HM, Tsao S, Mavroudis C (2011) Extracardiac versus intra-atrial lateral tunnel fontan: extracardiac is better. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 14(1):4–10. https://doi.org/10.1053/j.pcsu.2011.01.019

    Article  PubMed  Google Scholar 

  24. Itatani K, Miyaji K, Tomoyasu T et al (2009) Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation. Ann Thorac Surg 88(2):565–572. https://doi.org/10.1016/j.athoracsur.2009.04.109

    Article  PubMed  Google Scholar 

  25. Lardo AC, Webber SA, Friehs I, del Nido PJ, Cape EG (1999) Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections. J Thorac Cardiovasc Surg 117(4):697–704. https://doi.org/10.1016/S0022-5223(99)70289-8

    Article  CAS  PubMed  Google Scholar 

  26. Prince MR, Novelline RA, Athanasoulis CA, Simon M (1983) The diameter of the inferior vena cava and its implications for the use of vena caval filters. Radiology 149(3):687–689. https://doi.org/10.1148/radiology.149.3.6647844

    Article  CAS  PubMed  Google Scholar 

  27. Ettinger ESI (1962) Angiographic measurement of the cardiac segment of the inferior vena cava in health and cardiovascular disease. Circulation 26:508–515

    Article  Google Scholar 

  28. Alexi-Meskishvili V, Ovroutski S, Ewert P et al (2000) Optimal conduit size for extracardiac Fontan operation. Eur J Cardiothorac Surg 18(6):690–695. https://doi.org/10.1016/s1010-7940(00)00593-5

    Article  CAS  PubMed  Google Scholar 

  29. Uemura H, Yagihara T, Kawahira Y, Yoshikawa Y, Kitamura S (2000) Total cavopulmonary connection in children with body weight less than 10 kg. Eur J Cardiothorac Surg 17(5):543–549. https://doi.org/10.1016/s1010-7940(00)00410-3

    Article  CAS  PubMed  Google Scholar 

  30. van Son JMRV, Hanley FL (1995) Extracardiac modification of the Fontan operation without use of prosthetic material. J Thorac Cardiovasc Surg 110(6):1766–1768

    Article  Google Scholar 

  31. Hvass U, Pansard Y, Bohm G, Depoix JP, Enguerrand D, Worms AM (1992) Bicaval pulmonary connection in tricuspid atresia using an extracardiac tube of autologous pediculated pericardium to bridge inferior vena cava. Eur J Cardiothorac Surg 6(1):49–51. https://doi.org/10.1016/1010-7940(92)90099-j

    Article  CAS  PubMed  Google Scholar 

  32. Okabe H, Nagata N, Kaneko Y, Kobayashi J, Kanemoto S, Takaoka T (1998) Extracardiac cavopulmonary connection of fontan procedure with autologous pedicled pericardium without cardiopulmonary bypass. J Thorac Cardiovasc Surg 116(6):1073–1075. https://doi.org/10.1016/S0022-5223(98)70061-3

    Article  CAS  PubMed  Google Scholar 

  33. Gundry SR, Razzouk AJ, del Rio MJ, Shirali G, Bailey LL (1997) The optimal Fontan connection: a growing extracardiac lateral tunnel with pedicled pericardium. J Thorac Cardiovasc Surg 114(4):552–558. https://doi.org/10.1016/S0022-5223(97)70043-6

    Article  CAS  PubMed  Google Scholar 

  34. Lemler MS, Ramaciotti C, Stromberg D, Scott WA, Leonard SR (2006) The extracardiac lateral tunnel Fontan, constructed with bovine pericardium: comparison with the extracardiac conduit Fontan. Am Heart J 151(4):928–933. https://doi.org/10.1016/j.ahj.2005.06.015

    Article  PubMed  Google Scholar 

  35. Shin'oka T, Matsumura G, Hibino N et al (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129(6):1330–1338. https://doi.org/10.1016/j.jtcvs.2004.12.047

    Article  PubMed  Google Scholar 

  36. Hibino N, McGillicuddy E, Matsumura G et al (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139(2):431–436. https://doi.org/10.1016/j.jtcvs.2009.09.057

    Article  PubMed  Google Scholar 

  37. Sugiura T, Matsumura G, Miyamoto S, Miyachi H, Breuer CK, Shinoka T (2018) Tissue-engineered Vascular Grafts in Children With Congenital Heart Disease: Intermediate Term Follow-up. Semin Thorac Cardiovasc Surg 30(2):175–179. https://doi.org/10.1053/j.semtcvs.2018.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bockeria LA, Svanidze O, Kim A et al (2017) Total cavopulmonary connection with a new bioabsorbable vascular graft: First clinical experience. J Thorac Cardiovasc Surg 153(6):1542–1550. https://doi.org/10.1016/j.jtcvs.2016.11.071

    Article  PubMed  Google Scholar 

  39. Drews JD, Pepper VK, Best CA et al (2020) Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aax6919

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ochiai Y, Imoto Y, Sakamoto M et al (2009) Mid-term follow-up of the status of Gore-Tex graft after extracardiac conduit Fontan procedure. Eur J Cardiothorac Surg 36(1):63–67. https://doi.org/10.1016/j.ejcts.2009.02.013

    Article  PubMed  Google Scholar 

  41. Lee C, Lee CH, Hwang SW et al (2007) Midterm follow-up of the status of Gore-Tex graft after extracardiac conduit Fontan procedure. Eur J Cardiothorac Surg 31(6):1008–1012. https://doi.org/10.1016/j.ejcts.2007.03.013

    Article  PubMed  Google Scholar 

  42. Ochiai Y, Imoto Y, Sakamoto M et al (2010) Longitudinal growth of the autologous vessels above and below the Gore-Tex graft after the extracardiac conduit Fontan procedure. Eur J Cardiothorac Surg 37(5):996–1001. https://doi.org/10.1016/j.ejcts.2009.12.010

    Article  PubMed  Google Scholar 

  43. Amodeo A, Galletti L, Marianeschi S et al (1997) Extracardiac Fontan operation for complex cardiac anomalies: seven years' experience. J Thorac Cardiovasc Surg 114(6):1020–1030. https://doi.org/10.1016/S0022-5223(97)70016-3

    Article  CAS  PubMed  Google Scholar 

  44. Restrepo M, Mirabella L, Tang E et al (2014) Fontan pathway growth: a quantitative evaluation of lateral tunnel and extracardiac cavopulmonary connections using serial cardiac magnetic resonance. Ann Thorac Surg 97(3):916–922. https://doi.org/10.1016/j.athoracsur.2013.11.015

    Article  PubMed  PubMed Central  Google Scholar 

  45. Voges I, Jerosch-Herold M, Hart C et al (2013) Anatomical and functional assessment of the intra-atrial lateral tunnel in the Fontan circulation. Eur J Cardiothorac Surg 44(3):462–467. https://doi.org/10.1093/ejcts/ezt066

    Article  PubMed  Google Scholar 

  46. Lemler MS, Scott WA, Leonard SR, Stromberg D, Ramaciotti C (2002) Fenestration improves clinical outcome of the fontan procedure: a prospective, randomized study. Circulation 105(2):207–212. https://doi.org/10.1161/hc0202.102237

    Article  PubMed  Google Scholar 

  47. Quinones JA, Deleon SY, Bell TJ et al (1997) Fenestrated fontan procedure: evolution of technique and occurrence of paradoxical embolism. Pediatr Cardiol 18(3):218–221. https://doi.org/10.1007/s002469900154

    Article  CAS  PubMed  Google Scholar 

  48. Mets JM, Bergersen L, Mayer JE Jr, Marshall AC, McElhinney DB (2013) Outcomes of stent implantation for obstruction of intracardiac lateral tunnel Fontan pathways. Circ Cardiovasc Interv 6(1):92–100. https://doi.org/10.1161/CIRCINTERVENTIONS.112.000099

    Article  PubMed  Google Scholar 

  49. Careddu L, Petridis FD, Angeli E et al (2019) Dacron Conduit for Extracardiac Total Cavopulmonary Anastomosis: A Word of Caution. Heart Lung Circ 28(12):1872–1880. https://doi.org/10.1016/j.hlc.2018.11.005

    Article  PubMed  Google Scholar 

  50. Adachi I, Yagihara T, Kagisaki K et al (2005) Fontan operation with a viable and growing conduit using pedicled autologous pericardial roll: serial changes in conduit geometry. J Thorac Cardiovasc Surg 130(6):1517–1522. https://doi.org/10.1016/j.jtcvs.2005.07.050

    Article  PubMed  Google Scholar 

  51. Adachi I, Yagihara T, Ishibashi-Ueda H, Kitamura S (2006) Immunohistological findings for an extracardiac conduit in Fontan pathway constructed with pedicled autologous pericardium. Eur J Cardiothorac Surg 29(6):1059–1060. https://doi.org/10.1016/j.ejcts.2006.02.050

    Article  PubMed  Google Scholar 

  52. Adachi I, Ishibashi-Ueda H, Yagihara T et al (2007) Immunohistologic examination of pedicled autologous pericardium 9 years after implantation for an extracardiac conduit in Fontan pathway: comparison with in situ pericardium and pulmonary arterial tissue from the same patient. J Thorac Cardiovasc Surg 133(4):1101–1103. https://doi.org/10.1016/j.jtcvs.2006.12.028

    Article  PubMed  Google Scholar 

  53. Yalcinbas YK, Erek E, Salihoglu E, Sarioglu A, Sarioglu T (2005) Early results of extracardiac fontan procedure with autologous pericardial tube conduit. Thorac Cardiovasc Surg 53(1):37–40. https://doi.org/10.1055/s-2004-830459

    Article  CAS  PubMed  Google Scholar 

  54. Hasaniya NW, Razzouk AJ, Mulla NF, Larsen RL, Bailey LL (2010) In situ pericardial extracardiac lateral tunnel Fontan operation: fifteen-year experience. J Thorac Cardiovasc Surg 140(5):1076–1083. https://doi.org/10.1016/j.jtcvs.2010.07.068

    Article  PubMed  Google Scholar 

  55. Park HK, Youn YN, Yang HS, Yoo BW, Choi JY, Park YH (2008) Results of an extracardiac pericardial-flap lateral tunnel Fontan operation. Eur J Cardiothorac Surg 34(3):68–69. https://doi.org/10.1016/j.ejcts.2008.04.034

    Article  Google Scholar 

  56. Chugh R (2019) The Fontan Thromboprophylaxis Dilemma: To Give, or What Not to Give. J Am Coll Cardiol 74(8):1082–1085. https://doi.org/10.1016/j.jacc.2019.07.021

    Article  PubMed  Google Scholar 

  57. Firdouse M, Agarwal A, Chan AK, Mondal T (2014) Thrombosis and thromboembolic complications in fontan patients: a literature review. Clin Appl Thromb Hemost 20(5):484–492. https://doi.org/10.1177/1076029613520464

    Article  PubMed  Google Scholar 

  58. Sathananthan G, Johal N, Verma T et al (2019) Clinical Importance of Fontan Circuit Thrombus in the Adult Population: Significant Association With Increased Risk of Cardiovascular Events. Can J Cardiol 35(12):1807–1814. https://doi.org/10.1016/j.cjca.2019.08.038

    Article  PubMed  Google Scholar 

  59. Hayabuchi Y, Mori K, Kitagawa T, Sakata M, Kagami S (2007) Polytetrafluoroethylene graft calcification in patients with surgically repaired congenital heart disease: evaluation using multidetector-row computed tomography. Am Heart J 153(5):806e1–e8. https://doi.org/10.1016/j.ahj.2007.01.035

    Article  Google Scholar 

  60. Pina LM, Dong X, Zhang L et al (2019) Rivaroxaban, a direct Factor Xa inhibitor, versus acetylsalicylic acid as thromboprophylaxis in children post-Fontan procedure: Rationale and design of a prospective, randomized trial (the UNIVERSE study). Am Heart J 213:97–104. https://doi.org/10.1016/j.ahj.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  61. Rijnberg FM, Hazekamp MG, Wentzel JJ et al (2018) Energetics of Blood Flow in Cardiovascular Disease: Concept and Clinical Implications of Adverse Energetics in Patients With a Fontan Circulation. Circulation 137(22):2393–2407. https://doi.org/10.1161/CIRCULATIONAHA.117.033359

    Article  PubMed  Google Scholar 

  62. Sundareswaran KS, Pekkan K, Dasi LP et al (2008) The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. Am J Physiol Heart Circ Physiol 295(6):H2427–H2435. https://doi.org/10.1152/ajpheart.00628.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khiabani RH, Whitehead KK, Han D et al (2015) Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart 101(2):139–143. https://doi.org/10.1136/heartjnl-2014-306337

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Project funding was supported by T32HL098039 (JK), PhRMA Pre-Doctoral Fellowship in Pharmacology/Toxicology (YC), NIH R01HL139796, NIH R01HL128847 and DoD W81XWH-18-1-0518

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Kelly.

Ethics declarations

Conflict of interest

TS and CB have received grant support from Gunze Limited.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, J.M., Mirhaidari, G.J.M., Chang, YC. et al. Evaluating the Longevity of the Fontan Pathway. Pediatr Cardiol 41, 1539–1547 (2020). https://doi.org/10.1007/s00246-020-02452-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-020-02452-6

Keywords

Navigation