Skip to main content

Advertisement

Log in

Impact of Confounding on Cost, Survival, and Length-of-Stay Outcomes for Neonates with Hypoplastic Left Heart Syndrome Undergoing Stage 1 Palliation Surgery

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The objective of this analysis was to update trends in LOS and costs by survivorship and ECMO use among neonates with hypoplastic left heart syndrome (HLHS) undergoing stage 1 palliation surgery using 2016 data from the Healthcare Cost and Utilization Project Kids’ Inpatient Database. We identified neonates ≤ 28 days old with HLHS undergoing Stage 1 surgery, defined as a Norwood procedure with modified Blalock–Taussig (BT) shunt, Sano modification, or both. Multivariable regression with year random effects was used to compare LOS and costs by hospital region, case volume, survivorship, and ECMO vs. no ECMO. An E-value analysis, an approach for conducting sensitivity analysis for unmeasured confounding, was performed to determine if unmeasured confounding contributed to the observed effects. Significant differences in total costs, LOS, and mortality were noted by hospital region, ECMO use, and sub-analyses of case volume. However, other than ECMO use and mortality, the maximum E-value confidence interval bound was 1.71, suggesting that these differences would disappear with an unmeasured confounder 1.71 times more associated with both the outcome and exposure (e.g., socioeconomic factors, environment, etc.) Our findings confirm previous literature demonstrating significant resource utilization among Norwood patients, particularly those undergoing ECMO use. Based on our E-value analysis, differences by hospital region and case volume can be explained by moderate unobserved confounding, rather than a reflection of the quality of care provided. Future analyses on surgical quality must account for unobserved factors to provide meaningful information for quality improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE, Anderson P, Mason CA, Collins JS, Kirby RS, Correa A (2010) Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A 88(12):1008–1016. https://doi.org/10.1002/bdra.20735

    Article  CAS  Google Scholar 

  2. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26(3):240–248

    Article  CAS  Google Scholar 

  3. Allan LD, Apfel HD, Printz BF (1998) Outcome after prenatal diagnosis of the hypoplastic left heart syndrome. Heart 79(4):371

    Article  CAS  Google Scholar 

  4. Caneo LF, Neirotti RA, Turquetto AL, Jatene MB (2016) The fontan operation is not the end of the road. Arq Bras Cardiol 106(2):162–165. https://doi.org/10.5935/abc.20160017

    Article  PubMed  PubMed Central  Google Scholar 

  5. Feinstein JA, Benson DW, Dubin AM, Cohen MS, Maxey DM, Mahle WT, Pahl E, Villafane J, Bhatt AB, Peng LF, Johnson BA, Marsden AL, Daniels CJ, Rudd NA, Caldarone CA, Mussatto KA, Morales DL, Ivy DD, Gaynor JW, Tweddell JS, Deal BJ, Furck AK, Rosenthal GL, Ohye RG, Ghanayem NS, Cheatham JP, Tworetzky W, Martin GR (2012) Hypoplastic left heart syndrome: current considerations and expectations. J Am Coll Cardiol 59(1 Suppl):S1–42. https://doi.org/10.1016/j.jacc.2011.09.022

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marshall AC, van der Velde ME, Tworetzky W, Gomez CA, Wilkins-Haug L, Benson CB, Jennings RW, Lock JE (2004) Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation 110(3):253–258. https://doi.org/10.1161/01.cir.0000135471.17922.17

    Article  PubMed  Google Scholar 

  7. Shenoy RU, Parness IA (2014) Hypoplastic left heart syndrome: looking back, looking forward. J Am Coll Cardiol 64(19):2036–2038. https://doi.org/10.1016/j.jacc.2014.09.018

    Article  PubMed  Google Scholar 

  8. Williams DL, Gelijns AC, Moskowitz AJ, Weinberg AD, Ng JH, Crawford E, Hayes CJ, Quaegebeur JM (2000) Hypoplastic left heart syndrome: valuing the survival. J Thorac Cardiovasc Surg 119(4 Pt 1):720–731. https://doi.org/10.1016/s0022-5223(00)70007-9

    Article  CAS  PubMed  Google Scholar 

  9. Ohye RG, Sleeper LA, Mahony L, Newburger JW, Pearson GD, Lu M, Goldberg CS, Tabbutt S, Frommelt PC, Ghanayem NS, Laussen PC, Rhodes JF, Lewis AB, Mital S, Ravishankar C, Williams IA, Dunbar-Masterson C, Atz AM, Colan S, Minich LL, Pizarro C, Kanter KR, Jaggers J, Jacobs JP, Krawczeski CD, Pike N, McCrindle BW, Virzi L, Gaynor JW (2010) Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N Engl J Med 362(21):1980–1992. https://doi.org/10.1056/NEJMoa0912461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Debrunner MG, Porayette P, Breinholt JP 3rd, Turrentine MW, Cordes TM (2013) Midterm survival of infants requiring postoperative extracorporeal membrane oxygenation after Norwood palliation. Pediatr Cardiol 34(3):570–575. https://doi.org/10.1007/s00246-012-0499-x

    Article  PubMed  Google Scholar 

  11. Anderson BR, Ciarleglio AJ, Cohen DJ, Lai WW, Neidell M, Hall M, Glied SA, Bacha EA (2016) The Norwood operation: relative effects of surgeon and institutional volumes on outcomes and resource utilization. Cardiol Young 26(4):683–692. https://doi.org/10.1017/S1047951115001031

    Article  PubMed  Google Scholar 

  12. Pinto NM, Waitzman N, Nelson R, Minich LL, Krikov S, Botto LD (2018) Early childhood inpatient costs of critical congenital heart disease. J Pediatr 203(371–379):e377. https://doi.org/10.1016/j.jpeds.2018.07.060

    Article  Google Scholar 

  13. Essaid L, Strassle PD, Jernigan EG, Nelson JS (2018) Regional differences in cost and length of stay in neonates with hypoplastic left heart syndrome. Pediatr Cardiol 39(6):1229–1235. https://doi.org/10.1007/s00246-018-1887-7

    Article  PubMed  Google Scholar 

  14. McHugh KE, Pasquali SK, Hall MA, Scheurer MA (2016) Impact of postoperative complications on hospital costs following the Norwood operation. Cardiol Young 26(7):1303–1309. https://doi.org/10.1017/S1047951115002498

    Article  PubMed  Google Scholar 

  15. Danford DA, Karels Q, Kulkarni A, Hussain A, Xiao Y, Kutty S (2015) Mortality-related resource utilization in the inpatient care of hypoplastic left heart syndrome. Orphanet J Rare Dis 10:137. https://doi.org/10.1186/s13023-015-0355-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Benavidez OJ, Connor JA, Gauvreau K, Jenkins KJ (2007) The contribution of complications to high resource utilization during congenital heart surgery admissions. Congenit Heart Dis 2(5):319–326. https://doi.org/10.1111/j.1747-0803.2007.00119.x

    Article  PubMed  Google Scholar 

  17. Czosek RJ, Anderson JB, Heaton PC, Cassedy A, Schnell B, Cnota JF (2013) Staged palliation of hypoplastic left heart syndrome: trends in mortality, cost, and length of stay using a national database from 2000 through 2009. Am J Cardiol 111(12):1792–1799. https://doi.org/10.1016/j.amjcard.2013.02.039

    Article  PubMed  Google Scholar 

  18. Hirsch JC, Gurney JG, Donohue JE, Gebremariam A, Bove EL, Ohye RG (2008) Hospital mortality for Norwood and arterial switch operations as a function of institutional volume. Pediatr Cardiol 29(4):713–717. https://doi.org/10.1007/s00246-007-9171-2

    Article  PubMed  Google Scholar 

  19. Dean PN, Hillman DG, McHugh KE, Gutgesell HP (2011) Inpatient costs and charges for surgical treatment of hypoplastic left heart syndrome. Pediatrics 128(5):e1181–1186. https://doi.org/10.1542/peds.2010-3742

    Article  PubMed  Google Scholar 

  20. Menon SC, Keenan HT, Weng HY, Lambert LM, Burch PT, Edwards R, Spackman A, Korgenski KE, Tani LY (2012) Outcome and resource utilization of infants born with hypoplastic left heart syndrome in the Intermountain West. Am J Cardiol 110(5):720–727. https://doi.org/10.1016/j.amjcard.2012.04.050

    Article  PubMed  Google Scholar 

  21. Jolley M, Yarlagadda VV, Rajagopal SK, Almodovar MC, Rycus PT, Thiagarajan RR (2014) Extracorporeal membrane oxygenation-supported cardiopulmonary resuscitation following stage 1 palliation for hypoplastic left heart syndrome. Pediatr Crit Care Med 15(6):538–545. https://doi.org/10.1097/PCC.0000000000000159

    Article  PubMed  Google Scholar 

  22. Healthcare Cost and Utilization Project (2019) User Guide: Cost-to-Charge Ratio File for KID, 2003–2016. Healthcare Cost and Utilization Project. https://www.hcup-us.ahrq.gov/db/state/costtocharge.jsp. Accessed 18 April 2019

  23. van der Ven JPG, van den Bosch E, Bogers A, Helbing WA (2018) State of the art of the Fontan strategy for treatment of univentricular heart disease. F1000Res. https://doi.org/10.12688/f1000research.13792.1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Healthcare Cost and Utilization Project (2019) ZIPINC_QRTL - Median household income for patient's ZIP Code (based on current year). Healthcare Cost and Utilization Project,. https://www.hcup-us.ahrq.gov/db/vars/zipinc_qrtl/nisnote.jsp. Accessed 12 March 2020

  25. Society of Thoracic Surgeons (2019) Data Collection Form v3.41. https://www.sts.org/registries-research-center/sts-national-database/congenital-heart-surgery-database/data-collection. Accessed 18 April 2019

  26. Haneuse S, VanderWeele TJ, Arterburn D (2019) Using the E-value to assess the potential effect of unmeasured confounding in observational studies. JAMA 321(6):602–603. https://doi.org/10.1001/jama.2018.21554

    Article  PubMed  Google Scholar 

  27. Mathur MB, Ding P, Riddell CA, VanderWeele TJ (2018) Web site and R package for computing E-values. Epidemiology 29(5):e45–e47. https://doi.org/10.1097/EDE.0000000000000864

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hornik CP, He X, Jacobs JP, Li JS, Jaquiss RD, Jacobs ML, O'Brien SM, Peterson ED, Pasquali SK (2011) Complications after the Norwood operation: an analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg 92(5):1734–1740. https://doi.org/10.1016/j.athoracsur.2011.05.100

    Article  PubMed  PubMed Central  Google Scholar 

  29. Society of Thoracic Surgeons (2019) Neonates - Spring 2019 Harvest. https://www.sts.org/registries-research-center/sts-national-database/sts-congenital-heart-surgery-database. Accessed November 12 2019

  30. Romley JA, Chen AY, Goldman DP, Williams R (2014) Hospital costs and inpatient mortality among children undergoing surgery for congenital heart disease. Health Serv Res 49(2):588–608. https://doi.org/10.1111/1475-6773.12120

    Article  PubMed  Google Scholar 

  31. Tabbutt S, Ghanayem N, Ravishankar C, Sleeper LA, Cooper DS, Frank DU, Lu M, Pizarro C, Frommelt P, Goldberg CS, Graham EM, Krawczeski CD, Lai WW, Lewis A, Kirsh JA, Mahony L, Ohye RG, Simsic J, Lodge AJ, Spurrier E, Stylianou M, Laussen P, Pediatric Heart Network I (2012) Risk factors for hospital morbidity and mortality after the Norwood procedure: a report from the Pediatric Heart Network Single Ventricle Reconstruction trial. J Thorac Cardiovasc Surg 144(4):882–895. https://doi.org/10.1016/j.jtcvs.2012.05.019

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pieper D, Mathes T, Asfour B (2014) A systematic review of the impact of volume of surgery and specialization in Norwood procedure. BMC Pediatr 14:198. https://doi.org/10.1186/1471-2431-14-198

    Article  PubMed  PubMed Central  Google Scholar 

  33. Faraoni D, Nasr VG, DiNardo JA, Thiagarajan RR (2016) Hospital costs for neonates and children supported with extracorporeal membrane oxygenation. J Pediatr 169(69–75):e61. https://doi.org/10.1016/j.jpeds.2015.10.002

    Article  Google Scholar 

  34. Gulgun M, Slack M (2016) Stent placement in a neonate with sano modification of the norwood using semi-elective extracorporeal membrane oxygenation. Arq Bras Cardiol 107(6):600–604. https://doi.org/10.5935/abc.20160080

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brown KL, Shekerdemian LS, Penny DJ (2002) Transcatheter closure of a patent arterial duct in a patient on veno-arterial extracorporeal membrane oxygenation. Intensive Care Med 28(4):501–503. https://doi.org/10.1007/s00134-001-1202-5

    Article  PubMed  Google Scholar 

  36. Zahn EM, Dobrolet NC, Nykanen DG, Ojito J, Hannan RL, Burke RP (2004) Interventional catheterization performed in the early postoperative period after congenital heart surgery in children. J Am Coll Cardiol 43(7):1264–1269. https://doi.org/10.1016/j.jacc.2003.10.051

    Article  PubMed  Google Scholar 

  37. Booth KL, Roth SJ, Perry SB, del Nido PJ, Wessel DL, Laussen PC (2002) Cardiac catheterization of patients supported by extracorporeal membrane oxygenation. J Am Coll Cardiol 40(9):1681–1686

    Article  Google Scholar 

  38. Petrou S, Bischof M, Bennett C, Elbourne D, Field D, McNally H (2006) Cost-effectiveness of neonatal extracorporeal membrane oxygenation based on 7-year results from the United Kingdom Collaborative ECMO Trial. Pediatrics 117(5):1640–1649. https://doi.org/10.1542/peds.2005-1150

    Article  PubMed  Google Scholar 

  39. Hoskote A, Bohn D, Gruenwald C, Edgell D, Cai S, Adatia I, Van Arsdell G (2006) Extracorporeal life support after staged palliation of a functional single ventricle: subsequent morbidity and survival. J Thorac Cardiovasc Surg 131(5):1114–1121. https://doi.org/10.1016/j.jtcvs.2005.11.035

    Article  PubMed  Google Scholar 

  40. Ungerleider RM, Shen I, Yeh T, Schultz J, Butler R, Silberbach M, Giacomuzzi C, Heller E, Studenberg L, Mejak B, You J, Farrel D, McClure S, Austin EH (2004) Routine mechanical ventricular assist following the Norwood procedure—improved neurologic outcome and excellent hospital survival. Ann Thorac Surg 77(1):18–22. https://doi.org/10.1016/s0003-4975(03)01365-1

    Article  PubMed  Google Scholar 

  41. Hearld LR, Alexander JA, Fraser I, Jiang HJ (2008) Review: how do hospital organizational structure and processes affect quality of care? A critical review of research methods. Med Care Res Rev 65(3):259–299. https://doi.org/10.1177/1077558707309613

    Article  PubMed  Google Scholar 

  42. Shipton H, Armstrong C, West M, Dawson J (2008) The impact of leadership and quality climate on hospital performance. Int J Qual Health Care 20(6):439–445. https://doi.org/10.1093/intqhc/mzn037

    Article  PubMed  Google Scholar 

  43. Skinner J (2011) Causes and Consequences of Regional Variations in Health Care11This chapter was written for the Handbook of Health Economics (Vol. 2). My greatest debt is to John E. Wennberg for introducing me to the study of regional variations. I am also grateful to Handbook authors Elliott Fisher, Joseph Newhouse, Douglas Staiger, Amitabh Chandra, and especially Mark Pauly for insightful comments, and to the National Institute on Aging (PO1 AG19783) for financial support. 2:45–93. doi:10.1016/b978-0-444-53592-4.00002-5

  44. Peyvandi S, Baer RJ, Moon-Grady AJ, Oltman SP, Chambers CD, Norton ME, Rajagopal S, Ryckman KK, Jelliffe-Pawlowski LL, Steurer MA (2018) Socioeconomic mediators of racial and ethnic disparities in congenital heart disease outcomes: a population-based study in California. J Am Heart Assoc 7(20):e010342. https://doi.org/10.1161/JAHA.118.010342

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bennett KM, Scarborough JE, Pappas TN, Kepler TB (2010) Patient socioeconomic status is an independent predictor of operative mortality. Ann Surg 252(3):552–557; doi: 10.1097/SLA.0b013e3181f2ac64

  46. Castellanos DA, Herrington C, Adler S, Haas K, Ram Kumar S, Kung GC (2016) Home Monitoring Program Reduces Mortality in High-Risk Sociodemographic Single-Ventricle Patients. Pediatr Cardiol 37(8):1575–1580. https://doi.org/10.1007/s00246-016-1472-x

    Article  PubMed  Google Scholar 

  47. Hanke SP, Joy B, Riddle E, Ravishankar C, Peterson LE, King E, Mangeot C, Brown DW, Schoettker P, Anderson JB, Bates KE (2016) Risk Factors for Unanticipated Readmissions During the Interstage: A Report From the National Pediatric Cardiology Quality Improvement Collaborative. Semin Thorac Cardiovasc Surg 28(4):803–814. https://doi.org/10.1053/j.semtcvs.2016.08.011

    Article  PubMed  Google Scholar 

  48. Rudd NA, Frommelt MA, Tweddell JS, Hehir DA, Mussatto KA, Frontier KD, Slicker JA, Bartz PJ, Ghanayem NS (2014) Improving interstage survival after Norwood operation: outcomes from 10 years of home monitoring. J Thorac Cardiovasc Surg 148(4):1540–1547. https://doi.org/10.1016/j.jtcvs.2014.02.038

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

CLG conceived the study design and analysis and wrote the manuscript. AYS performed all statistical analyses. RH, AL, PSF, LY, JDP, RKS, and RW each provided input on additional statistical analyses and critical editorial feedback on the manuscript.

Funding

This work is supported by the Teresa and Byron Pollitt Family Chair in Fetal & Neonatal Medicine at Children’s Hospital Los Angeles (Los Angeles/CA/USA). Dr. Lakshmanan is supported by grant KL2TR001854 from the National Center for Advancing Translational Science (NCATS) of the U.S. National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia L. Gong.

Ethics declarations

Conflict of interest

All authors report no other disclosures or conflicts of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (include name of committee + reference number) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, C.L., Song, A.Y., Horak, R. et al. Impact of Confounding on Cost, Survival, and Length-of-Stay Outcomes for Neonates with Hypoplastic Left Heart Syndrome Undergoing Stage 1 Palliation Surgery. Pediatr Cardiol 41, 996–1011 (2020). https://doi.org/10.1007/s00246-020-02348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-020-02348-5

Keywords

Navigation