Skip to main content

Advertisement

Log in

Two-Dimensional Strain is more Precise than Conventional Measures of Left Ventricular Systolic Function in Pediatric Patients

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Ejection fraction (EF) and fractional shortening (FS) are standard methods of quantifying left ventricular (LV) systolic function. 2D global longitudinal strain (2D GLS) is a well-established, but underutilized method for LV function quantification. The aim of this study was to assess precision of GLS compared to EF & FS in pediatrics. Echocardiograms were prospectively analyzed by 2 blinded observers. FS, EF, and GLS were calculated following standard methods. Bland–Altman was applied to assess agreement. Intraclass correlation coefficient (ICC) was used to measure reliability. Coefficient of variation was used to demonstrate relative variability between methods. 103 pediatric echos were evaluated for inter-observer reproducibility, and 15 patients for intra-observer reproducibility. GLS had higher inter-observer agreement and reliability (bias 7%, 95% LOA − 3.4 to + 3.5, ICC 0.86 CI 0.80–0.90) compared to EF (bias 27%, 95% LOA − 18.9 to + 19.5; ICC 0.25 CI 0.07–0.43) and FS (bias 12%, 95% LOA − 11.9 to + 12.2; ICC 0.53 CI 0.38–0.66). GLS also had higher intra-observer agreement (bias 4%, 95% LOA − 3.6 to + 3.7; ICC 0.87 CI 0.66–0.96) compared to EF (bias 11%, 95% LOA − 14.9 to + 15.1; ICC 0.26 CI −  0.28–0.67) and FS (bias 12%, 95% LOA − 12.2 to + 12.5; ICC 0.38 CI − 0.15–0.74). GLS is a more precise method for quantifying LV function in pediatrics, with lower variability compared to EF and FS. GLS provides a more reliable evaluation of LV systolic function and should be utilized more widely in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GLS:

Global longitudinal Lagrangian strain

ICC:

Intraclass correlation coefficient

CV:

Coefficient of variation

2D STE:

Two-dimensional speckle tracking echocardiography

LV:

Left ventricular

Obs:

Observer

References

  1. Wood PW, Choy JB, Nanda NC, Becher H (2014) Left ventricular ejection fraction and volumes: it depends on the imaging method. Echocardiography 31:87–100

    Article  Google Scholar 

  2. Picard MH, Popp RL, Weyman AE (2008) Assessment of left ventricular function by echocardiography: a technique in evolution. J Am Soc Echocardiogr 21:14–21

    Article  Google Scholar 

  3. Cameli M, Mondillo S, Solari M et al (2016) Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion. Heart Fail Rev 21:77–94

    Article  Google Scholar 

  4. Sugimoto T, Dulgheru R, Bernard A et al (2017) Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 18:833–840

    Article  Google Scholar 

  5. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26:185–191

    Article  Google Scholar 

  6. Jashari H, Rydberg A, Ibrahimi P et al (2015) Normal ranges of left ventricular strain in children: a meta-analysis. Cardiovasc Ultrasound 13:37

    Article  Google Scholar 

  7. Levy PT, Machefsky A, Sanchez AA et al (2016) Reference ranges of left ventricular strain measures by two-dimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J Am Soc Echocardiogr 29(209–225):e6

    Google Scholar 

  8. Ari ME, Cetin II, Kocabas A, Ekici F, Ceylan O, Surucu M (2016) Decreased deformation in asymptomatic children with isolated left ventricular non-compaction and normal ejection fraction. Pediatr Cardiol 37:201–207

    Article  Google Scholar 

  9. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH (2014) Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 63:2751–2768

    Article  Google Scholar 

  10. Dandel M, Hetzer R (2017) Post-transplant surveillance for acute rejection and allograft vasculopathy by echocardiography: usefulness of myocardial velocity and deformation imaging. J Heart Lung Transplant 36:117–131

    Article  Google Scholar 

  11. Gunasekaran P, Panaich S, Briasoulis A, Cardozo S, Afonso L (2017) Incremental value of two dimensional speckle tracking echocardiography in the functional assessment and characterization of subclinical left ventricular dysfunction. Curr Cardiol Rev 13:32–40

    Article  Google Scholar 

  12. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100:1673–1680

    Article  Google Scholar 

  13. Lopez L, Colan SD, Frommelt PC et al (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 23:465–495

    Article  Google Scholar 

  14. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1–39):e14

    Google Scholar 

  15. Systems GM (2008). In: Systems GM (ed) EchoPAC PC user manuel, 1st edn. General Electric Co., Boston, pp. 1–627.

    Google Scholar 

  16. Lorch SM, Ludomirsky A, Singh GK (2008) Maturational and growth-related changes in left ventricular longitudinal strain and strain rate measured by two-dimensional speckle tracking echocardiography in healthy pediatric population. J Am Soc Echocardiogr 21:1207–1215

    Article  Google Scholar 

  17. Takigiku K, Takeuchi M, Izumi C et al (2012) Normal range of left ventricular 2-dimensional strain: Japanese Ultrasound Speckle Tracking of the Left Ventricle (JUSTICE) study. Circ J 76:2623–2632

    Article  Google Scholar 

  18. Yang H, Marwick TH, Fukuda N et al (2015) Improvement in strain concordance between two major vendors after the strain standardization initiative. J Am Soc Echocardiogr 28(642–8):e7

    Google Scholar 

  19. Lee CK, Margossian R, Sleeper LA et al (2014) Variability of M-mode versus two-dimensional echocardiography measurements in children with dilated cardiomyopathy. Pediatr Cardiol 35:658–667

    Article  Google Scholar 

  20. Margossian R, Chen S, Sleeper LA et al (2015) The reproducibility and absolute values of echocardiographic measurements of left ventricular size and function in children are algorithm dependent. J Am Soc Echocardiogr 28(549–558):e1

    Google Scholar 

  21. Chen S, Selamet Tierney ES, Khush KK et al (2015) Reliability of echocardiographic measurements of left ventricular systolic function in potential pediatric heart transplant donors. J Heart Lung Transplant 34:100–106

    Article  Google Scholar 

  22. Korinek J, Wang J, Sengupta PP et al (2005) Two-dimensional strain—a Doppler-independent ultrasound method for quantitation of regional deformation: validation in vitro and in vivo. J Am Soc Echocardiogr 18:1247–1253

    Article  Google Scholar 

  23. Amundsen BH, Helle-Valle T, Edvardsen T et al (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793

    Article  Google Scholar 

  24. Geyer H, Caracciolo G, Abe H et al (2010) Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 23:351–369

    Article  Google Scholar 

  25. Risum N, Ali S, Olsen NT et al (2012) Variability of global left ventricular deformation analysis using vendor dependent and independent two-dimensional speckle-tracking software in adults. J Am Soc Echocardiogr 25:1195–1203

    Article  Google Scholar 

  26. Takahashi M, Harada N, Isozaki Y et al (2013) Efficiency of quantitative longitudinal peak systolic strain values using automated function imaging on transthoracic echocardiogram for evaluating left ventricular wall motion: new diagnostic criteria and agreement with naked eye evaluation by experienced cardiologist. Int J Cardiol 167:1625–1631

    Article  Google Scholar 

  27. Stanton T, Leano R, Marwick TH (2009) Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2:356–364

    Article  Google Scholar 

  28. Pignatelli RH, Ghazi P, Reddy SC et al (2015) Abnormal myocardial strain indices in children receiving anthracycline chemotherapy. Pediatr Cardiol 36:1610–1616

    Article  Google Scholar 

  29. Poterucha JT, Kutty S, Lindquist RK, Li L, Eidem BW (2012) Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. J Am Soc Echocardiogr 25:733–740

    Article  Google Scholar 

  30. Florescu M, Magda LS, Enescu OA, Jinga D, Vinereanu D (2014) Early detection of epirubicin-induced cardiotoxicity in patients with breast cancer. J Am Soc Echocardiogr 27:83–92

    Article  Google Scholar 

  31. Negishi K, Negishi T, Haluska BA, Hare JL, Plana JC, Marwick TH (2014) Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur Heart J Cardiovasc Imaging 15:324–331

    Article  Google Scholar 

  32. Sarvari SI, Gjesdal O, Gude E et al (2012) Early postoperative left ventricular function by echocardiographic strain is a predictor of 1-year mortality in heart transplant recipients. J Am Soc Echocardiogr 25:1007–1014

    Article  Google Scholar 

  33. Ruotsalainen H, Bellsham-Revell H, Bell A, Pihkala J, Ojala T, Simpson J (2016) Right ventricular systolic function in hypoplastic left heart syndrome: a comparison of velocity vector imaging and magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 17:687–692

    Article  Google Scholar 

  34. Ghelani SJ, Harrild DM, Gauvreau K, Geva T, Rathod RH (2016) Echocardiography and magnetic resonance imaging based strain analysis of functional single ventricles: a study of intra- and inter-modality reproducibility. Int J Cardiovasc Imaging 32:1113–1120

    Article  Google Scholar 

  35. Schlangen J, Petko C, Hansen JH et al (2014) Two-dimensional global longitudinal strain rate is a preload independent index of systemic right ventricular contractility in hypoplastic left heart syndrome patients after Fontan operation. Circ Cardiovasc Imaging 7:880–886

    Article  Google Scholar 

  36. Anwar S, Negishi K, Borowszki A et al (2017) Comparison of two-dimensional strain analysis using vendor-independent and vendor-specific software in adult and pediatric patients. JRSM Cardiovasc Dis 6:2048004017712862

    PubMed  PubMed Central  Google Scholar 

  37. Voigt JU, Pedrizzetti G, Lysyansky P et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr 28:183–193

    Article  Google Scholar 

  38. Shiino K, Yamada A, Ischenko M et al (2017) Intervendor consistency and reproducibility of left ventricular 2D global and regional strain with two different high-end ultrasound systems. Eur Heart J Cardiovasc Imaging 18:707–716

    PubMed  Google Scholar 

  39. Nagata Y, Takeuchi M, Mizukoshi K et al (2015) Intervendor variability of two-dimensional strain using vendor-specific and vendor-independent software. J Am Soc Echocardiogr 28:630–641

    Article  Google Scholar 

  40. Mirea O, Pagourelias ED, Duchenne J et al (2017) Variability and Reproducibility of segmental longitudinal strain measurement: a report from the EACVI-ASE Strain Standardization Task Force. JACC Cardiovasc Imaging 11(1):15–24

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the sonographers and staff at the Heart Station, St. Louis Children’s Hospital for their contributions to echocardiographic acquisitions related to this study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghna D. Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors. This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.D., Myers, C., Negishi, K. et al. Two-Dimensional Strain is more Precise than Conventional Measures of Left Ventricular Systolic Function in Pediatric Patients. Pediatr Cardiol 41, 186–193 (2020). https://doi.org/10.1007/s00246-019-02243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-019-02243-8

Keywords

Navigation