Skip to main content
Log in

Cumulative Radiation Exposure in Pediatric Patients with Congenital Heart Disease

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Certain pediatric patients undergoing surgery for the most severe forms of congenital heart disease are exposed to high doses of ionizing radiation. The amount of cumulative radiation exposure from all modalities has not yet been evaluated. The purpose of our study was to evaluate the cumulative radiation exposure in a contemporary cohort of patients with congenital heart disease undergoing single-ventricle palliation. This is a single-center, retrospective study of pediatric patients undergoing Fontan completion between May 2005 and May 2010. Radiation exposure from all procedures including cardiac catheterizations, computed tomography (CT) scans, plain film radiography, and nuclear medicine scans was evaluated. Radiation dose was calculated as the dose area product (μGy m2) and was measured in all cardiac catheterizations, CT scans, and other imaging modalities. Seventy patients who underwent Fontan completion at a mean age of 3.6 ± 1.5 years (range 1.4–8 years) were included in the study. Mean number of chest X-rays was 32 ± 8 (range 10–285) with a mean cumulative total exposure of 1,320 μGy m2 (range 480–12,960) per patient. Mean number of cardiac catheterizations was 2.45 ± 1.3 (range 1–8), and mean fluoroscopy and cine angiography exposures per case were 1,103 ± 245 and 1,412 ± 273 μGy m2 giving a mean cumulative exposure of 9,054 μGy m2 (range 2,515–201,200) per patient for all catheterizations. Mean number of CT scans performed was 0.44 ± 0.4 (0–11), and the mean exposure was 352 μGy m2, giving a mean cumulative total of 154 μGy m2 (range 0–3,872) per person. A total of five lung perfusion scans were carried out. Radiation exposure in patients with congenital heart disease undergoing single-ventricle palliation is quite variable. Most of the exposure to ionizing radiation occurs during cardiac catheterization. Strategies to utilize other imaging modalities such as MRI would decrease exposure in this particular group of patients who may be particularly vulnerable to its side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andreassi MG (2009) Radiation risk from pediatric cardiac catheterization: friendly fire on children with congenital heart disease. Circulation 120(19):1847–1849. doi:10.1161/CIRCULATIONAHA.109.904458

    Article  PubMed  Google Scholar 

  2. Andreassi MG, Ait-Ali L, Botto N, Manfredi S, Mottola G, Picano E (2006) Cardiac catheterization and long-term chromosomal damage in children with congenital heart disease. Eur Heart J 27(22):2703–2708. doi:10.1093/eurheartj/ehl014

    Article  PubMed  Google Scholar 

  3. Bacher K, Bogaert E, Lapere R, De Wolf D, Thierens H (2005) Patient-specific dose and radiation risk estimation in pediatric cardiac catheterization. Circulation 111(1):83–89. doi:10.1161/01.CIR.0000151098.52656.3A

    Article  PubMed  Google Scholar 

  4. Beels L, Bacher K, De Wolf D, Werbrouck J, Thierens H (2009) gamma-H2AX foci as a biomarker for patient X-ray exposure in pediatric cardiac catheterization: are we underestimating radiation risks? Circulation 120(19):1903–1909. doi:10.1161/CIRCULATIONAHA.109.880385

    Article  CAS  PubMed  Google Scholar 

  5. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubin JH, Preston DL, Preston RJ, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB, Zaider M (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 100(24):13761–13766. doi:10.1073/pnas.2235592100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Brown DW, Gauvreau K, Powell AJ, Lang P, Del Nido PJ, Odegard KC, Geva T (2013) Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis: long-term follow-up of a prospective randomized trial. J Thorac Cardiovasc Surg. doi:10.1016/j.jtcvs.2012.12.079

    Google Scholar 

  7. Chen J, Einstein AJ, Fazel R, Krumholz HM, Wang Y, Ross JS, Ting HH, Shah ND, Nasir K, Nallamothu BK (2010) Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: a population-based analysis. J Am Coll Cardiol 56(9):702–711. doi:10.1016/j.jacc.2010.05.014

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fogel MA, Pawlowski TW, Whitehead KK, Harris MA, Keller MS, Glatz AC, Zhu W, Shore D, Diaz LK, Rome JJ (2012) Cardiac magnetic resonance and the need for routine cardiac catheterization in single ventricle patients prior to Fontan: a comparison of 3 groups: pre-Fontan CMR versus cath evaluation. J Am Coll Cardiol 60(12):1094–1102. doi:10.1016/j.jacc.2012.06.021

    Article  PubMed  Google Scholar 

  9. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26(3):240–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Garcia Castanon P, Espana Lopez ML, Fernandez Bedoya V, Bermudez Luna R, Rodriguez Martin G (2012) A dose index as a tool to estimate paediatric patient doses in digital projection radiography. Radiat Prot Dosimetry 149(4):417–423. doi:10.1093/rpd/ncr313

    Article  PubMed  Google Scholar 

  11. Gellis LA, Ceresnak SR, Gates GJ, Nappo L, Pass RH (2013) Reducing patient radiation dosage during pediatric SVT ablations using an “ALARA” radiation reduction protocol in the modern fluoroscopic era. Pacing Clin Electrophysiol (PACE). doi:10.1111/pace.12124

  12. Graham TP Jr, Johns JA (1992) Pre-operative assessment of ventricular function in patients considered for Fontan procedure. Herz 17(4):213–219

    PubMed  Google Scholar 

  13. Hiorns MP (2006) A review of current local dose-area product levels for paediatric fluoroscopy in a tertiary referral centre compared with national standards. Why are they so different? Br J Radiol 79(940):326–330. doi:10.1259/bjr/36530782

    Article  CAS  PubMed  Google Scholar 

  14. Kleinerman RA (2006) Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 36(Suppl 2):121–125. doi:10.1007/s00247-006-0191-5

    Article  PubMed Central  PubMed  Google Scholar 

  15. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, Feigelson HS, Roblin D, Flynn MJ, Vanneman N, Smith-Bindman R (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167(8):700–707. doi:10.1001/jamapediatrics.2013.311

    Article  PubMed Central  PubMed  Google Scholar 

  16. Rassow J, Schmaltz AA, Hentrich F, Streffer C (2000) Effective doses to patients from paediatric cardiac catheterization. Br J Radiol 73(866):172–183

    Article  CAS  PubMed  Google Scholar 

  17. Robbins E (2008) Radiation risks from imaging studies in children with cancer. Pediatr Blood Cancer 51(4):453–457. doi:10.1002/pbc.21599

    Article  PubMed  Google Scholar 

  18. Rogers LS, Glatz AC, Ravishankar C, Spray TL, Nicolson SC, Rychik J, Rush CH, Gaynor JW, Goldberg DJ (2012) 18 years of the Fontan operation at a single institution: results from 771 consecutive patients. J Am Coll Cardiol 60(11):1018–1025. doi:10.1016/j.jacc.2012.05.010

    Article  PubMed  Google Scholar 

  19. Stecker MS, Balter S, Towbin RB, Miller DL, Vano E, Bartal G, Angle JF, Chao CP, Cohen AM, Dixon RG, Gross K, Hartnell GG, Schueler B, Statler JD, de Baere T, Cardella JF, Safety SIR, Health C, Committee CSoP (2009) Guidelines for patient radiation dose management. J Vasc Interv Radiol (JVIR) 20(7 Suppl):S263–S273. doi:10.1016/j.jvir.2009.04.037

    Article  Google Scholar 

  20. Verghese GR, McElhinney DB, Strauss KJ, Bergersen L (2012) Characterization of radiation exposure and effect of a radiation monitoring policy in a large volume pediatric cardiac catheterization lab. Catheter Cardiovasc Interv 79(2):294–301. doi:10.1002/ccd.23118

    Article  PubMed  Google Scholar 

  21. Yakoumakis E, Kostopoulou H, Makri T, Dimitriadis A, Georgiou E, Tsalafoutas I (2013) Estimation of radiation dose and risk to children undergoing cardiac catheterization for the treatment of a congenital heart disease using Monte Carlo simulations. Pediatr Radiol 43(3):339–346. doi:10.1007/s00247-012-2510-3

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Walsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, M.A., Noga, M. & Rutledge, J. Cumulative Radiation Exposure in Pediatric Patients with Congenital Heart Disease. Pediatr Cardiol 36, 289–294 (2015). https://doi.org/10.1007/s00246-014-0999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-014-0999-y

Keywords

Navigation