Skip to main content

Advertisement

Log in

A Comprehensive Study of Clinical Biomarkers, Use of Inotropic Medications and Fluid Resuscitation in Newborns with Persistent Pulmonary Hypertension

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Persistent pulmonary hypertension of the newborn (PPHN) is associated with high morbidity and mortality. This study evaluated clinical outcomes in PPHN in relation to echocardiographic (EC) markers, score of neonatal acute physiology, perinatal extension, version II (SNAPPE II) scores, inotropic agent use, and the amount of fluid received as boluses. In this retrospective chart analysis of 98 neonates with PPHN born at >34 weeks’ gestation, we compared two cohorts of newborns: those who received inhaled nitric oxide and mechanical ventilation only, and who survived to discharge (Group 1); and those who required extracorporeal membrane oxygenation (ECMO) or who died (Group 2). Of 21 EC parameters assessed, seven were significantly different between Group 1 and Group 2. Eleven (24.4 %) newborns in Group 2 had decreased left ventricular (LV) function, compared with three (5.1 %) in Group 1 (p = 0.011). Median SNAPPE II scores were significantly higher in Group 2 than in Group 1 (p < 0.001). Newborns in Group 2 also received a significantly higher amount of fluid as boluses during the first 7 days of hospitalization compared with Group 1 (p = 0.018). Following logistic regression analysis, only the difference in total SNAPPE II score retained statistical significance (p < 0.001); however, the total amount of fluid administered as boluses trended higher (p = 0.087) for newborns in Group 2. Our findings show that SNAPPE II scores may help guide counseling for parents of newborns with PPHN regarding the likelihood of death or the need for ECMO. Limiting fluid boluses may improve outcomes in newborns with high SNAPPE II scores and decreased LV function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EC:

Echocardiogram

ECMO:

Extracorporeal membrane oxygenation

EF:

Ejection fraction

FDA:

Food and drug administration

FS:

Shortening fraction

HIE:

Hypoxic ischemic encephalopathy

iNO:

Inhaled nitric oxide

IVSd:

Interventricular septal wall thickness in diastole

IVSs:

Interventricular septal wall thickness in systole

LA:

Left atrial

LV:

Left ventricular

LVIDd:

Left ventricular diastolic diameter

LVPWd:

Left ventricular posterior wall thickness in diastole

LVPWs:

Left ventricular posterior wall thickness in systole

MAS:

Meconium aspiration syndrome

PA:

Pulmonary artery

PDA:

Patent ductus arteriosus

PPHN:

Persistent pulmonary hypertension of the newborn

RA:

Right atrial

RAP:

Right atrial pressure

RDS:

Respiratory distress syndrome

RV:

Right ventricular

RVDd:

Right ventricular diastolic diameter

RVSP:

Right ventricular systolic pressure

SNAPPE II:

Score for neonatal acute physiology, perinatal extension, version II

TR:

Tricuspid regurgitation

TRPG:

Tricuspid regurgitation pressure gradient

References

  1. Abman SH et al (2013) Implications of the U.S. Food and Drug Administration warning against the use of sildenafil for the treatment of pediatric pulmonary hypertension. Am J Respir Crit Care Med 187(6):572–575

    Article  CAS  PubMed  Google Scholar 

  2. Bassler D et al (2010) Milrinone for persistent pulmonary hypertension of the newborn. Cochrane Database Syst Rev 11:CD007802

    PubMed  Google Scholar 

  3. Bennett CC et al (2001) UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation: follow-up to age 4 years. Lancet 357(9262):1094–1096

    Article  CAS  PubMed  Google Scholar 

  4. Cabral JE, Belik J (2013) Persistent pulmonary hypertension of the newborn: recent advances in pathophysiology and treatment. J Pediatr (Rio J) 89(3):226–242

    Article  Google Scholar 

  5. Carcillo JA, Davis AL, Zaritsky A (1991) Role of early fluid resuscitation in pediatric septic shock. JAMA 266(9):1242–1245

    Article  CAS  PubMed  Google Scholar 

  6. Chang SM et al (2007) Pulmonary hypertension and left heart function: insights from tissue Doppler imaging and myocardial performance index. Echocardiography 24(4):366–373

    Article  PubMed  Google Scholar 

  7. Choi DY et al (2010) Respiratory variation in aortic blood flow velocity as a predictor of fluid responsiveness in children after repair of ventricular septal defect. Pediatr Cardiol 31(8):1166–1170

    Article  PubMed  Google Scholar 

  8. Evans N, Kluckow M, Currie A (1998) Range of echocardiographic findings in term neonates with high oxygen requirements. Arch Dis Child Fetal Neonatal Ed 78(2):F105–F111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Foland JA et al (2004) Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med 32(8):1771–1776

    Article  PubMed  Google Scholar 

  10. Fraisse A et al (2004) Doppler echocardiographic predictors of outcome in newborns with persistent pulmonary hypertension. Cardiol Young 14(3):277–283

    Article  PubMed  Google Scholar 

  11. Konduri GG, Kim UO (2009) Advances in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatr Clin North Am 56(3):579–600

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kumar D et al (2004) Predicting outcome in neonatal hypoxic respiratory failure with the score for neonatal acute physiology (SNAP) and highest oxygen index (OI) in the first 24 hours of admission. J Perinatol 24(6):376–381

    Article  PubMed  Google Scholar 

  13. Lakshminrusimha S et al (2009) Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med 10(1):106–112

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lemson J, Nusmeier A, van der Hoeven JG (2011) Advanced hemodynamic monitoring in critically ill children. Pediatrics 128(3):560–571

    PubMed  Google Scholar 

  15. Marik PE et al (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37(9):2642–2647

    Article  PubMed  Google Scholar 

  16. Nakwan N, Wannaro J (2011) Predicting mortality in infants with persistent pulmonary hypertension of the newborn with the Score for Neonatal Acute Physiology-Version II (SNAP-II) in Thai neonates. J Perinat Med 39(3):311–315

    Article  PubMed  Google Scholar 

  17. Ochikubo CG et al (1997) Echocardiographic evidence of improved hemodynamics during inhaled nitric oxide therapy for persistent pulmonary hypertension of the newborn. Pediatr Cardiol 18(4):282–287

    Article  CAS  PubMed  Google Scholar 

  18. Peterson AL et al (2009) Correlation of echocardiographic markers and therapy in persistent pulmonary hypertension of the newborn. Pediatr Cardiol 30(2):160–165

    Article  PubMed  Google Scholar 

  19. Richardson DK et al (2001) SNAP-II and SNAPPE-II: simplified newborn illness severity and mortality risk scores. J Pediatr 138(1):92–100

    Article  CAS  PubMed  Google Scholar 

  20. Skinner JR, Hunter S, Hey EN (1996) Haemodynamic features at presentation in persistent pulmonary hypertension of the newborn and outcome. Arch Dis Child Fetal Neonatal Ed 74(1):F26–F32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. St John Sutton MG, Meyer RA (1983) Left ventricular function in persistent pulmonary hypertension of the newborn. Computer analysis of the echocardiogram. Br Heart J 50(6):540–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Steinhorn RH (2010) Neonatal pulmonary hypertension. Pediatr Crit Care Med 11(2 Suppl):S79–S84

    Article  PubMed Central  PubMed  Google Scholar 

  23. Steinhorn RH, Abman SH (2012) Persistent pulmonary hypertension. In: Devaskar SU, Gleason CA (eds) Avery’s diseases of the newborn. Elsevier, Philadelphia, pp 732–740

    Chapter  Google Scholar 

  24. Storme L et al (2013) Pathophysiology of persistent pulmonary hypertension of the newborn: impact of the perinatal environment. Arch Cardiovasc Dis 106(3):169–177

    Article  PubMed  Google Scholar 

  25. Su BH, Peng CT, Tsai CH (2001) Persistent pulmonary hypertension of the newborn: echocardiographic assessment. Acta Paediatr Taiwan 42(4):218–223

    CAS  PubMed  Google Scholar 

  26. Teng RJ, Wu TJ (2013) Persistent pulmonary hypertension of the newborn. J Formos Med Assoc 112(4):177–184

    Article  PubMed Central  PubMed  Google Scholar 

  27. Valdes-Cruz LM, Dudell GG, Ferrara A (1981) Utility of M-mode echocardiography for early identification of infants with persistent pulmonary hypertension of the newborn. Pediatrics 68(4):515–525

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Kamat, Professor of Pediatrics at the Children’s Hospital of Michigan, and Dr. Naheed, Division Chair of Pediatric Cardiology at John H Stroger Jr Hospital of Cook County for their valuable suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Shashikant Chouthai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mydam, J., Zidan, M. & Chouthai, N.S. A Comprehensive Study of Clinical Biomarkers, Use of Inotropic Medications and Fluid Resuscitation in Newborns with Persistent Pulmonary Hypertension. Pediatr Cardiol 36, 233–239 (2015). https://doi.org/10.1007/s00246-014-0992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-014-0992-5

Keywords

Navigation