Skip to main content
Log in

Averaging Principle for Two Time-Scales Stochastic Partial Differential Equations with Reflection

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this work, we consider a system of fast and slow time-scale stochastic partial differential equations with reflection, where the slow component is the one-dimensional stochastic Burgers equation, the fast component is the stochastic reaction-diffusion equation, and both the fast and slow components have two reflecting walls. The well-posedness of this system is established. Our approach is based on the penalized method by giving the delicate estimation of the penalized terms, which do not resort to splitting the reflected system into stochastic system without reflection and deterministic system with reflection. Then by means of penalized method and combining the classical Khasminskii’s time discretization, we prove the averaging principle for a class of reflected stochastic partial differential equations. In particular, due to the existence and uniqueness of invariant measure for fast component with frozen slow component, the ergodicity for frozen equations are given for different initial function spaces, which plays an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)

    MathSciNet  Google Scholar 

  2. Wu, F., Tian, T., Rawlings, J.B., Yin, G.: Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations. J. Chem. Phys. 144(17), 174112 (2016)

    Article  Google Scholar 

  3. Wang, W., Roberts, A.J.: Average and deviation for slow-fast stochastic partial differential equations. J. Differ. Equ. 253(5), 1265–1286 (2012)

    Article  MathSciNet  Google Scholar 

  4. Ball, K., Kurtz, T.G., Popovic, L., Rempala, G.: Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Probab. 16(4), 1925–1961 (2006)

    Article  MathSciNet  Google Scholar 

  5. Kang, H.W., Kurtz, T.G.: Separation of time-scales and model reduction for stochastic reaction networks. Ann. Appl. Probab. 23(2), 164–187 (2010)

    MathSciNet  Google Scholar 

  6. Bardi, M., Cesaroni, A., Manca, L.: Convergence by viscosity methods in multiscale financial models with stochastic volatility. Siam J. Financ. Math. 1(1), 230–265 (2010)

    Article  MathSciNet  Google Scholar 

  7. Fouque, J.P., Papanicolaou, G.: Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives, pp. 424–429. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  8. Kifer, Y.: Averaging and Climate Models. Stochastic Climate Models, Progress in Probability Book Series, vol. 49, pp. 171–188. Springer, New York (2001)

    Google Scholar 

  9. Bogoliubov, N.N., Mitropolski, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach Science Publishers, New York (1961)

    Google Scholar 

  10. Volosov, V.M.: Averaging in systems of ordinary differential equations. Russ. Math. Surv. 17, 1–126 (1962)

    Article  MathSciNet  Google Scholar 

  11. Khasminskii, R.Z.: On an averaging principle for Itô stochastic differential equations. Kibernetica 4, 260–279 (1968)

    Google Scholar 

  12. Freidlin, M., Wentzell, A.: Random Perturbations of Dynamical Systems. Springer, Berlin (2012)

    Book  Google Scholar 

  13. Givon, D.: Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. Multiscale Model Simul. 6, 577–594 (2007)

    Article  MathSciNet  Google Scholar 

  14. Thompson, W.F., Kuske, R.A., Monahan, A.H.: Stochastic averaging of dynamical systems with multiple time scales forced with \(\alpha \)-stable noise. Soc. Ind. Appl. Math. 13(4), 1540–3459 (2015)

    MathSciNet  Google Scholar 

  15. Xu, W., Duan, J., Xu, W.: An averaging principle for stochastic dynamical systems with Lévy noise. Physica D 240(17), 1395–1401 (2011)

    Article  MathSciNet  Google Scholar 

  16. Xu, Y., Pei, B., Guo, R.: Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discret. Cont. Dyn. Sys. Ser. B 20(7), 2257–2267 (2015)

    MathSciNet  Google Scholar 

  17. Xu, Y., Pei, B., Wu, J.L.: Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion. Stoch. Dyn. 17(2), 1750013 (2017)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Y., Huang, Q., Wang, X., Wang, Z., Duan, J.: Weak averaging principle for multiscale stochastic dynamical systems driven by stable processes. J. Differ. Equ. 2(379), 721–761 (2024)

    Article  MathSciNet  Google Scholar 

  19. Liu, W., Röckner, M., Sun, X., Xie, Y.: Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients. J. Differ. Equ. 268, 2910–2948 (2020)

    Article  MathSciNet  Google Scholar 

  20. Röckner, M., Sun, X., Xie, Y.: Strong convergence order for slow-fast McKean-Vlasov stochastic differential equations. Ann. Inst. Henri Poincaré Probab. Stat. 57(1), 547–576 (2021)

    Article  MathSciNet  Google Scholar 

  21. Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab. 19, 899–948 (2009)

    Article  MathSciNet  Google Scholar 

  22. Cerrai, S.: Averaging principle for systems of reaction-diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. SIAM J. Math. Anal. 43, 2482–2518 (2011)

    Article  MathSciNet  Google Scholar 

  23. Cerrai, S., Freidlin, M.: Averaging principle for a class of stochastic reaction-diffusion equations. Probab. Theory Relat. Fields 144(1–2), 137–177 (2009)

    Article  MathSciNet  Google Scholar 

  24. Pei, B., Xu, Y., Wu, J.L.: Two-time-scales hyperbolic-parabolic equations driven by Poisson random measures: existence, uniqueness and averaging principles. J. Math. Anal. Appl. 477(1), 243–268 (2017)

    Article  MathSciNet  Google Scholar 

  25. Gao, P.: Averaging principle for complex Ginzburg-Landau equation perturbated by mixing random forces. SIAM J. Math. Anal. 53(1), 32–61 (2021)

    Article  MathSciNet  Google Scholar 

  26. Sun, X., Xie, L., Xie, Y.: Averaging principle for slow-fast stochastic partial differential equations with Hölder continuous coefficients. J. Differ. Equ. 270, 476–504 (2021)

    Article  Google Scholar 

  27. Pei, B., Xu, Y., Yin, G.: Averaging principles for SPDEs driven by fractional Brownian motions with random delays modulated by two-time-scale markov switching processes. Stoch. Dyn. 18, 1850023 (2018)

    Article  MathSciNet  Google Scholar 

  28. Pei, B., Xu, Y., Wu, J.L.: Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Appl. Math. Lett. 100, 106006 (2020)

    Article  MathSciNet  Google Scholar 

  29. Han, M., Xu, Y., Pei, B., Wu, J.L.: Two-time-scale stochastic differential delay equations driven by multiplicative fractional Brownian noise: averaging principle. J. Math. Anal. Appl. 510(2), 126004 (2022)

    Article  MathSciNet  Google Scholar 

  30. Hong, W., Li, S., Liu, W.: Strong convergence rates in averaging principle for slow-fast McKean-Vlasov SPDEs. J. Differ. Equ. 316, 94–135 (2022)

    Article  MathSciNet  Google Scholar 

  31. Nualart, D., Pardoux, E.: White noise driven quasilinear SPDEs with reflection. Probab. Theory Relat. Fields 93(1), 77–89 (1992)

    Article  MathSciNet  Google Scholar 

  32. Xu, T., Zhang, T.: White noise driven SPDEs with reflection: existence, uniqueness and large deviation principles. Stoch. Process. Appl. 119(10), 3453–3470 (2009)

    Article  MathSciNet  Google Scholar 

  33. Zhang, T.: Systems of stochastic partial differential equations with reflection: existence and uniqueness. Stoch. Process. Appl. 121(6), 1356–1372 (2011). https://doi.org/10.1016/j.spa.2011.02.003

    Article  MathSciNet  Google Scholar 

  34. Yang, X., Zhang, J.: Systems of reflected stochastic PDEs in a convex domain: analytical approach. J. Differ. Equ. 284, 350–373 (2021)

    Article  MathSciNet  Google Scholar 

  35. Wang, R., Zhai, J., Zhang, S.: Large deviation principle for stochastic Burgers type equation with reflection. Commun. Pure Appl. Anal. 21(1), 213–238 (2022)

    MathSciNet  Google Scholar 

  36. Funaki, T., Olla, S.: Fluctuations for interface model on a wall. Stoch. Process. Appl. 94(1), 1–27 (2001)

    Article  MathSciNet  Google Scholar 

  37. Hambly, B., Kalsi, J., Newbury, J.: Limit order books, diffusion approximations and reflected SPDEs: From microscopic to macroscopic models. Applied Mathematical Finance 27(1–2), 132–170 (2020)

    Article  MathSciNet  Google Scholar 

  38. Dong, Z., Sun, X., Xiao, H., Zhai, J.: Averaging principle for one dimensional stochastic Burgers equation. J. Differ. Equ. 265(10), 4749–4797 (2018)

    Article  MathSciNet  Google Scholar 

  39. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  40. Zhang, T.: Stochastic Burgers type equations with reflection: Existence, uniqueness. J. Differ. Equ. 2 267(8), 4537–4571 (2019)

  41. Fu, H., Liu, J.: Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations. J. Math. Anal. Appl. 384(1), 70–86 (2011)

    Article  MathSciNet  Google Scholar 

  42. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  43. Zhang, T., Yang, J.: White noise driven SPDEs with two reflecting walls. Infinite Dimens. Anal. Quantum Probab. Relat. Topics 14(04), 647–659 (2012)

    Article  MathSciNet  Google Scholar 

  44. Yang, J., Zhang, T.: Existence and uniqueness of invariant measures for SPDEs with two reflecting walls. J. Theoret. Probab. 27(3), 863–877 (2014)

    Article  MathSciNet  Google Scholar 

  45. Ce, Rrai S.: Second Order PDE’s in Finite and Infinite Dimension. Springer, New York (2003)

    Google Scholar 

  46. Cerrai, S., Freidlin, M.: Averaging principle for stochastic reaction-diffusion equations. Probab. Theory Relat. Fields 144(1–2), 137–177 (2009)

    Article  MathSciNet  Google Scholar 

  47. Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab. 19(3), 899–948 (2009)

    Article  MathSciNet  Google Scholar 

  48. Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003)

    Book  Google Scholar 

  49. Dong, Z., Xu, T.G.: One-dimensional stochastic Burgers equation driven by Lévy processes. J. Funct. Anal. 243, 631–678 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors acknowledge the support provided by the NNSF of China No. 11871010, and NNSF of China No. 11871116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following several properties of \(b(\cdot ,\cdot ,\cdot )\) and \(B(\cdot ,\cdot )\) are well-known (for example see [49]) and will be used later on.

Lemma A.1

For any \(x, y \in H^1_0(0, 1)\),

$$\begin{aligned} b(x,x,y)=-\frac{1}{2}b(x,y,x),\quad b(x,x,x)=0. \end{aligned}$$

Lemma A.2

Suppose \(\alpha _{i}\ge 0~(i=1,2,3)\) satisfies one of the following conditions

\((1) ~\alpha _{i}\ne \frac{1}{2}(i=1,2,3), \alpha _{1}+\alpha _{2}+\alpha _{3}\ge \frac{1}{2}\),

\((2) ~\alpha _{i}=\frac{1}{2}\) for some i, \(\alpha _{1}+\alpha _{2}+\alpha _{3}>\frac{1}{2}\),

then b is continuous from \(H^{\alpha _{1}}(0,1)\times H^{\alpha _{2}+1}(0,1)\times H^{\alpha _{3}}(0,1)\) to \({\mathbb {R}}\), i.e.

$$\begin{aligned} \big |b(x,y,z)\big |\le C|x|_{\alpha _{1}}|y|_{\alpha _{2}+1}|z|_{\alpha _{3}}. \end{aligned}$$

The following inequalities can be derived by the above lemma.

Lemma A.3

For any \(x\in H_{0}^{1}(0,1)\), we have

\((1) |B(x)|\le C||x||^{2}\).

\((2) |B(x)|_{-1}\le C|x|\cdot ||x||.\)

Lemma A.4

For any \(x,y\in H_{0}^{1}(0,1)\), we have

\((1) |B(x)-B(y)|\le C|x-y|_{1}(||x||+||y||)\).

\((2) |B(x)-B(y)|_{-1}\le C|x-y|\left( ||x||+||y||\right) .\)

\((3) \langle B(x)-B(y), x-y\rangle \le C|x-y|(||x-|y||)||x||.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Yang, J. Averaging Principle for Two Time-Scales Stochastic Partial Differential Equations with Reflection. Appl Math Optim 89, 59 (2024). https://doi.org/10.1007/s00245-024-10123-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-024-10123-8

Keywords

Mathematics Subject Classification

Navigation