Skip to main content
Log in

Sensitivity Analysis of Value Functional of Fractional Optimal Control Problem with Application to Feedback Construction of Near Optimal Controls

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider an optimal control problem for a dynamical system described by a Caputo fractional differential equation of order \(\alpha \in (0, 1)\) and a terminal cost functional. We prove that, under certain assumptions, the (non-smooth, in general) value functional of this problem has a property of directional differentiability of order \(\alpha \). As an application of this result, we propose a new method for constructing an optimal positional (feedback) control strategy, which allows us to generate \(\varepsilon \)-optimal controls for any predetermined accuracy \(\varepsilon > 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berkovitz, L.D.: Optimal feedback controls. SIAM J. Control Optim. 27, 991–1006 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  3. Fattorini, H.O.: Infinite Dimensional Optimization and Control Theory. Cambridge University Press, New York (1999)

    Book  MATH  Google Scholar 

  4. Frankowska, H.: Optimal trajectories associated with a solution of the contingent Hamilton-Jacobi equation. Appl. Math. Optim. 19, 291–311 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gomoyunov, M.I.: Dynamic programming principle and Hamilton-Jacobi-Bellman equations for fractional-order systems. SIAM J. Control Optim. 58, 3185–3211 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gomoyunov, M.I.: Extremal shift to accompanying points in a positional differential game for a fractional-order system. Proc. Steklov Inst. Math. 308, S83–S105 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gomoyunov, M.I.: On representation formulas for solutions of linear differential equations with Caputo fractional derivatives. Fract. Calc. Appl. Anal. 23, 1141–1160 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gomoyunov, M.I.: Optimal control problems with a fixed terminal time in linear fractional-order systems. Arch. Control Sci. 30, 721–744 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Gomoyunov, M.I.: Solution to a zero-sum differential game with fractional dynamics via approximations. Dyn. Games Appl. 10, 417–443 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gomoyunov, M.I.: To the theory of differential inclusions with Caputo fractional derivatives. Diff. Equat. 56, 1387–1401 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gomoyunov, M.I.: Differential games for fractional-order systems: Hamilton–Jacobi–Bellman–Isaacs equation and optimal feedback strategies. Mathematics 9, 1667 (2021)

    Article  Google Scholar 

  12. Gomoyunov, M.I.: On differentiability of solutions of fractional differential equations with respect to initial data. Fract. Calc. Appl. Anal. 25, 1484–1506 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gomoyunov, M.I., Lukoyanov, N.Y.: Differential games in fractional-order systems: inequalities for directional derivatives of the value functional. Proc. Steklov Inst. Math. 315, 65–84 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gomoyunov, M.I., Lukoyanov, N.Y., Plaksin, A.R.: Path-dependent Hamilton-Jacobi equations: the minimax solutions revised. Appl. Math. Optim. 84, S1087–S1117 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  17. Kim, A.V.: Functional Differential Equations: Application of \(i\)-Smooth Calculus. Kluwer Academic Publishers, Dordrecht, The Netherlands (1999)

    Book  MATH  Google Scholar 

  18. Krasovskii, A.N., Krasovskii, N.N.: Control under Lack of Information. Birkhäuser, Boston (1995)

    Book  MATH  Google Scholar 

  19. Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer, New York (1988)

    Book  Google Scholar 

  20. Lukoyanov, N.Y.: A Hamilton-Jacobi type equation in control problems with hereditary information. J. Appl. Math. Mech. 64, 243–253 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lukoyanov, N.Y.: The properties of the value functional of a differential game with hereditary information. J. Appl. Math. Mech. 65, 361–370 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lukoyanov, N.Y.: Functional Hamilton-Jacobi type equations with \(ci\)-derivatives in control problems with hereditary information. Nonlinear Funct. Anal. Appl. 8, 535–555 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Osipov, Y.S.: On the theory of differential games of systems with aftereffect. J. Appl. Math. Mech. 35, 262–272 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rowland, J.D.L., Vinter, R.B.: Construction of optimal feedback controls. Syst. Control. Lett. 16, 357–367 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon, Switzerland (1993)

    MATH  Google Scholar 

  26. Subbotin, A.I.: Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective. Birkhäuser, Basel (1995)

    Book  Google Scholar 

  27. Subbotin, A.I., Subbotina, N.N.: The optimum result function in a control problem. Sov. Math. Dokl. 26, 336–340 (1982)

    MATH  Google Scholar 

  28. Subbotin, A.I., Subbotina, N.N.: The basis for the method of dynamic programming in optimal control problems. Eng. Cybern. 21, 16–23 (1983)

    MathSciNet  Google Scholar 

  29. Subbotina, N.N.: The method of characteristics for Hamilton-Jacobi equations and applications to dynamical optimization. J. Math. Sci. 135, 2955–3091 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York and London (1972)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by RSF, project no. 19–11–00105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Gomoyunov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomoyunov, M. Sensitivity Analysis of Value Functional of Fractional Optimal Control Problem with Application to Feedback Construction of Near Optimal Controls. Appl Math Optim 88, 41 (2023). https://doi.org/10.1007/s00245-023-10022-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10022-4

Keywords

Mathematics Subject Classification

Navigation