Skip to main content
Log in

Maximum Principle for Mean-Field SDEs Under Model Uncertainty

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper is concerned with necessary and sufficient conditions for optimal control problem of mean-field type under model uncertainty. Since the classical variational method is not enough to get the results in this case, we should draw support from weak convergence method. As an application in finance, we study the time-inconsistent mean-variance portfolio selection problem in this model uncertainty setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, D., Djehiche, B.: A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63(3), 341–356 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Bensoussan, A.: Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions. Stochastics 9(3), 169–222 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Sung, K.C.J., Yam, S.C.P.: Linear-quadratic time-inconsistent mean field games. Dyn. Games Appl. 3(4), 537–552 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Bensoussan, A., Sung, K.C.J., Yam, S.C.P., Yung, S.P.: Linear-quadratic mean field games. J. Optim. Theory Appl. 169(2), 496–529 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Biagini, F., Meyer-Brandis, T., Øksendal, B., Paczka, K.: Optimal control with delayed information flow of systems driven by \(G\)-Brownian motion. Probab. Uncertain. Quant. Risk 3(1), 1–24 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Bismut, J.M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44(2), 384–404 (1973)

    MathSciNet  MATH  Google Scholar 

  7. Buckdahn, R., Djehiche, B., Li, J.: A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64(2), 197–216 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Buckdahn, R., Djehiche, B., Li, J., Peng, S.: Mean-field backward stochastic differential equations: a limit approach. Ann. Probab. 37(4), 1524–1565 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Buckdahn, R., Li, J., Ma, J.: A stochastic maximum principle for general mean-field systems. Appl. Math. Optim. 74(3), 507–534 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Buckdahn, R., Li, J., Peng, S.: Mean-field backward stochastic differential equations and related partial differential equations. Stoch. Process. Appl. 119(10), 3133–3154 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45(2), 824–878 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Carmona, R., Delarue, F.: Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics. Ann. Probab. 43(5), 2647–2700 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications I-II. Springer, New York (2018)

    MATH  Google Scholar 

  14. Chen, S., Zhou, X.Y.: Stochastic linear quadratic regulators with indefinite control weight costs. II. SIAM J. Control Optim. 39(4), 1065–1081 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Chen, Z., Epstein, L.: Ambiguity, risk, and asset returns in continuous time. Econometrica 70(4), 1403–1443 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Crisan, D., Xiong, J.: Approximate McKean-Vlasov representations for a class of SPDEs. Stochastics 82(1), 53–68 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Djehiche, B., Tembine, H., Tempone, R.: A stochastic maximum principle for risk-sensitive mean-field type control. IEEE Trans. Autom. Control 60(10), 2640–2649 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Elliott, R., Li, X., Ni, Y.H.: Discrete time mean-field stochastic linear-quadratic optimal control problems. Automatica 49(11), 3222–3233 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Epstein, L.G., Ji, S.: Ambiguous volatility, possibility and utility in continuous time. J. Math. Econ. 50, 269–282 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Hu, M., Ji, S.: Stochastic maximum principle for stochastic recursive optimal control problem under volatility ambiguity. SIAM J. Control Optim. 54(2), 918–945 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Hu, M., Wang, F.: Maximum principle for stochastic recursive optimal control problem under model uncertainty. SIAM J. Control Optim. 58(3), 1341–1370 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Hu, Y., Zhou, X.Y.: Indefinite stochastic Riccati equations. SIAM J. Control Optim. 42(1), 123–137 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Huang, J., Li, X., Yong, J.: A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Math. Control Relat. Fields 5(1), 97–139 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\varepsilon \)-Nash equilibria. IEEE Trans. Autom. Control 52(9), 1560–1571 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Jourdain, B., Máléard, S., Woyczynski, W.: Nonlinear sdes driven by lévy processes and related pdes. Latin Am. J. Probab. Math. Stat. 4, 1–29 (2007)

    MATH  Google Scholar 

  27. Kac, M.: Foundations of kinetic theory. In: Proceedings of The third Berkeley symposium on mathematical statistics and probability, vol. 3, pp. 171–197 (1956)

  28. Kohlmann, M., Tang, S.: Multidimensional backward stochastic Riccati equations and applications. SIAM J. Control Optim. 41(6), 1696–1721 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Kotelenez, P.M., Kurtz, T.G.: Macroscopic limits for stochastic partial differential equations of McKean-Vlasov type. Probab. Theory Relat. Fields 146(1–2), 189 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Kushner, H.J.: Necessary conditions for continuous parameter stochastic optimization problems. SIAM J. Control 10(3), 550–565 (1972)

    MathSciNet  MATH  Google Scholar 

  31. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Li, J.: Stochastic maximum principle in the mean-field controls. Automatica 48(2), 366–373 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Li, N., Li, X., Yu, Z.: Indefinite mean-field type linear-quadratic stochastic optimal control problems. Automatica 122, 109267 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Li, X., Sun, J., Xiong, J.: Linear quadratic optimal control problems for mean-field backward stochastic differential equations. Appl. Math. Optim. 80(1), 223–250 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Lim, A.E., Zhou, X.Y.: Mean-variance portfolio selection with random parameters in a complete market. Math. Oper. Res. 27(1), 101–120 (2002)

    MathSciNet  MATH  Google Scholar 

  36. McKean, H.P., Jr.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56(6), 1907 (1966)

    MathSciNet  MATH  Google Scholar 

  37. Meyer-Brandis, T., Øksendal, B., Zhou, X.Y.: A mean-field stochastic maximum principle via Malliavin calculus. Stochastics 84(5–6), 643–666 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28(4), 966–979 (1990)

    MathSciNet  MATH  Google Scholar 

  39. Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications, vol. 61. Springer, New York (2009)

    MATH  Google Scholar 

  40. Pham, H., Wei, X.: Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics. SIAM J. Control Optim. 55(2), 1069–1101 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Qian, Z., Zhou, X.Y.: Existence of solutions to a class of indefinite stochastic Riccati equations. SIAM J. Control Optim. 51(1), 221–229 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Rami, M.A., Chen, X., Moore, J.B., Zhou, X.Y.: Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls. IEEE Trans. Autom. Control 46(3), 428–440 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Rudin, W.: Real and Complex Analysis. Tata McGraw-hill education, New York (2006)

    MATH  Google Scholar 

  44. Shen, Y., Siu, T.K.: The maximum principle for a jump-diffusion mean-field model and its application to the mean-variance problem. Nonlinear Anal. Theory Methods Appl. 86, 58–73 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Tang, S.: General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42(1), 53–75 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Veretennikov, A.Y.: On ergodic measures for McKean-Vlasov stochastic equations. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 471–486. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  47. Yong, J.: Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM J. Control Optim. 51(4), 2809–2838 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Yong, J.: Linear-quadratic optimal control problems for mean-field stochastic differential equations-time-consistent solutions. Trans. Am. Math. Soc. 369(8), 5467–5523 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations, vol. 43. Springer, New York (1999)

    MATH  Google Scholar 

  50. Zhang, X., Sun, Z., Xiong, J.: A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type. SIAM J. Control Optim. 56(4), 2563–2592 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Zhou, X.Y., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42(1), 19–33 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by the National Key R &D Program of China (No. 2018YFA0703900) and the National Natural Science Foundation of China (No. 12171280)

Research supported by the National Natural Science Foundation of China (No. 12101400)

Research supported by the National Natural Science Foundation of China (Nos. 12171280, 12031009, 11871310 and 11871458), Natural Science Foundation of Shandong Province for Excellent Youth Scholars (ZR2021YQ01) and the Young Scholars Program of Shandong University.

Appendix: The Uniform Boundedness of the Riccati Equation

Appendix: The Uniform Boundedness of the Riccati Equation

Lemma A.1

Suppose that \(\Phi (t,\theta ^*)\) is a solution to the Riccati equation (42). Then, it must be uniformly bounded for \(t\in [0,T]\) and \(\theta ^*\in [0,1]\).

Proof

It is known from [14, 42] that the Riccati equation (42) relates to the following optimal LQ control problem: Minimize the cost functional

$$\begin{aligned} J(t,x_0;u(\cdot ))=2\pi \mathbb {E}\left[ x(T)^{\top }\Theta ^*x(T)\right] \end{aligned}$$

subject to the dynamics

$$\begin{aligned} {\left\{ \begin{array}{ll} &{}dx(s)=\Big (e(s)x(s)+A^{\top }(s)u(s)\Big )ds+\sum \limits _{j=1}^{d}(\beta ^j(s))^{\top }u(s)dB^j(s),\\ &{}x(t)=x_0, \end{array}\right. } \end{aligned}$$

where the initial \((t,x_0)\in [0,T] \times \mathbb {R}^2\). If \(\Phi (t,\theta ^*)\) solves (42), then, recalling Theorem 2.2 in [42], the optimal value function is given by

$$\begin{aligned} \inf _{u(\cdot ) \in \mathcal {U}[0, T]} J\left( t,x_{0}; u(\cdot )\right) =x_0^{\top }\Phi (t,\theta ^*)x_0. \end{aligned}$$
(45)

Let \(x^0(\cdot )\) be the solution to the dynamics corresponding to the admissible control \(u(\cdot )\equiv 0\). Then, (45) implies

$$\begin{aligned} x_0^{\top }\Phi (t,\theta ^*)x_0 \le 2\pi \mathbb {E}\left[ x^0(T)^{\top }\Theta ^*x^0(T)\right] . \end{aligned}$$

It follows from a prior estimate of linear SDE that there exists a constant \(C>0\) such that

$$\begin{aligned} 0 \le |x_0^{\top }\Phi (t,\theta ^*)x_0| \le C |x_0^{\top } x_0|. \end{aligned}$$

The arbitrariness of the initial state \(x_0 \in \mathbb {R}^2 \) then gives the uniform boundedness of \(\Phi (t,\theta ^*)\) on \([0,T] \times [0,1]\).

Lemma A.2

Let \(\Phi (t,\theta ^*)\) be a solution to the Riccati equation (42). Then, \(\bigg (\sum \limits _{j=1}^{d}\beta ^j \Phi (\theta ^*) (\beta ^j)^{\top }\bigg )^{-1}\) is uniformly bounded with respect to \(\theta ^* \in [0,1]\).

Proof

If \(\theta ^* \in [0,\frac{1}{2}] \), we have \(\left( \begin{matrix} \theta ^* &{} 0 \\ 0 &{} 1-\theta ^* \end{matrix} \right) \ge \left( \begin{matrix} 0 &{} 0 \\ 0 &{} \frac{1}{2} \end{matrix} \right) \). Using the comparison theorem of Riccati equation (see Corollary 3.4 in [42]), we could get that

$$\begin{aligned} \Phi (t,\theta ^*)\ge \Phi _{\frac{1}{2}}(t)=\left( \begin{matrix} 0&{} 0 \\ 0 &{} \pi \exp \Big ( \int ^T_t 2e(s)-A^{\top }_2(s)(\beta _2(s)\beta ^{\top }_2(s))^{-1}A_2(s)ds\Big ) \end{matrix} \right) , \end{aligned}$$

where \(\Phi _{\frac{1}{2}}\) denotes the solution to (42) with \(\Phi _{\frac{1}{2}}(T)=\left( \begin{matrix} 0 &{} 0 \\ 0 &{} \pi \end{matrix} \right) \). Note that \(\Phi (t,\theta ^*) \in C([0,T];{S}^2_+)\) and

$$\begin{aligned} 0< \left( \sum \limits _{j=1}^{d}\beta ^j \Phi (\theta ^*) (\beta ^j)^{\top }\right) ^{-1} \le \left( \sum \limits _{j=1}^{d}\beta ^j \Phi _{\frac{1}{2}} (\beta ^j)^{\top }\right) ^{-1}. \end{aligned}$$

Then, the uniform boundedness of \((\sum \limits _{j=1}^{d}\beta ^j \Phi _{\frac{1}{2}} (\beta ^j)^{\top })^{-1}\) comes immediately from the nondegeneracy condition (34), which further implies the required result.

If \(\theta ^* \in (\frac{1}{2},1] \), we have \(\left( \begin{array}{ll} \theta ^* &{} 0 \\ 0 &{} 1-\theta ^* \end{array} \right) \ge \left( \begin{array}{ll} \frac{1}{2} &{} 0 \\ 0 &{} 0 \end{array} \right) \). Then, the rest of analysis can be proceeded similarly as above.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Luo, P. & Wang, F. Maximum Principle for Mean-Field SDEs Under Model Uncertainty. Appl Math Optim 87, 59 (2023). https://doi.org/10.1007/s00245-023-09970-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-09970-8

Keywords

Mathematics Subject Classification

Navigation