Skip to main content

Advertisement

Log in

Normality, Controllability and Properness in Optimal Control

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper we show that, for optimal control problems involving equality and inequality constraints on the control function, the notions of normality and properness (or the Mangasarian–Fromovitz constraint qualification) of a trajectory relative to the set of constraints are equivalent. This is in contrast with some differences recently obtained between the theories of mathematical programming and optimal control, and it provides an important insight in the derivation of first and second order necessary optimality conditions for infinite dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  2. Barmish, B.R., Schmitendorf, W.E.: A necessary and sufficient condition for local constrained controllability of a linear system. IEEE Trans. Autom. Control 25, 97–100 (1980)

    Article  MathSciNet  Google Scholar 

  3. Becerril, J.A., Rosenblueth, J.F.: Necessity for isoperimetric inequality constraints. Discrete Contin. Dyn. Syst. Series A 37, 1129–1158 (2017)

    Article  MathSciNet  Google Scholar 

  4. Becerril, J.A., Rosenblueth, J.F.: The importance of being normal, regular and proper in the calculus of variations. J. Optim. Theory Appl. 172, 759–773 (2017)

    Article  MathSciNet  Google Scholar 

  5. Becerril, J.A., Cortez, K.L., Rosenblueth, J.F.: Uniqueness of multipliers in optimal control: the missing piece. IMA J. Math. Control. Inf. 36, 1395–1411 (2019)

    Article  MathSciNet  Google Scholar 

  6. Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming. J. Optim. Theory Appl. 31, 143–165 (1980)

    Article  MathSciNet  Google Scholar 

  7. Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control. Springer, London (2013)

    Book  Google Scholar 

  8. Cortez, K.L., Rosenblueth, J.F.: Normality and uniqueness of Lagrange multipliers. Discrete Contin. Dyn. Syst. Series A 38, 3169–3188 (2018)

    Article  MathSciNet  Google Scholar 

  9. Cortez, K.L., Rosenblueth, J.F.: The broken link between normality and regularity in the calculus of variations. Syst. Control Lett. 124, 27–32 (2019)

    Article  MathSciNet  Google Scholar 

  10. Cortez, K.L., Rosenblueth, J.F.: The supporting role of the Mangasarian–Fromovitz constraint qualification in the calculus of variations. J. Dyn. Control Syst. (2021)

  11. de Pinho, M.R., Rosenblueth, J.F.: Mixed constraints in optimal control: an implicit function theorem approach. IMA J. Math. Control. Inf. 24, 197–218 (2007)

    Article  MathSciNet  Google Scholar 

  12. Giorgi, G., Guerraggio, A., Thierfelder, J.: Mathematics of Optimization: Smooth and Nonsmooth Case. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  13. Haas, V.B.: Normality and controllability for the problem of Bolza. Int. J. Control 30, 331–338 (1979)

    Article  MathSciNet  Google Scholar 

  14. Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)

    MATH  Google Scholar 

  15. Hestenes, M.R.: Optimization Theory, The Finite Dimensional Case. Wiley, New York (1975)

    MATH  Google Scholar 

  16. Jourani, A.: Normality, local controllability and NOC for multiobjective optimal control problems. In: Anzaldo-Meneses, A., Monroy-Pérez, F., Bonnard, B., Gauthier, P. (eds.) Contemporary Trends in Nonlinear Geometric Control Theory and its Applications, pp. 359–380. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

  17. Kyparisis, J.: On uniqueness of Kuhn–Tucker multipliers in nonlinear programming. Math. Progr. 32, 242–246 (1985)

    Article  MathSciNet  Google Scholar 

  18. McShane, E.J.: The Lagrange multiplier rule. Am. Math. Mon. 80, 922–925 (1973)

    Article  Google Scholar 

  19. Rosenblueth, J.F.: Convex cones and conjugacy for inequality control constraints. J. Convex Anal. 14, 361–393 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Rosenblueth, J.F., Sánchez Licea, G.: Cones of critical directions in optimal control. Int. J. Appl. Math. Inform. 7, 55–67 (2013)

    Article  Google Scholar 

  21. Schmitendorf, W.E., Barmish, B.R.: Null controllability of linear systems with constrained controls. SIAM J. Control Optim. 18, 327–345 (1980)

    Article  MathSciNet  Google Scholar 

  22. Wachsmuth, G.: On LICQ and the uniqueness of Lagrange multipliers. Oper. Res. Lett. 41, 78–80 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is grateful to CONACYT for the financial support. The second author is grateful to DGAPA, from Universidad Nacional Autónoma de México, for the support given as part of the PASPA program during a sabbatical stay at the Department of Mathematical Sciences, University of Bath, United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier F. Rosenblueth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortez, K.L., Rosenblueth, J.F. Normality, Controllability and Properness in Optimal Control. Appl Math Optim 84 (Suppl 1), 159–173 (2021). https://doi.org/10.1007/s00245-021-09765-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09765-9

Keywords

Mathematics Subject Classification

Navigation