Skip to main content
Log in

Optimal Stopping of Marked Point Processes and Reflected Backward Stochastic Differential Equations

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We define a class of reflected backward stochastic differential equation (RBSDE) driven by a marked point process (MPP) and a Brownian motion, where the solution is constrained to stay above a given càdlàg process. The MPP is only required to be non-explosive and to have totally inaccessible jumps. Under suitable assumptions on the coefficients we obtain existence and uniqueness of the solution, using the Snell envelope theory. We use the equation to represent the value function of an optimal stopping problem, and we characterize the optimal strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bandini, E.: Existence and uniqueness for BSDEs driven by a general random measure, possibly non quasi-left-continuous. Electron. Commun. Probab. 20(71), 13 (2015). https://doi.org/10.1214/ECP.v20-4348

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandini, E.: Optimal control of Piecewise Deterministic Markov Processes: a BSDE representation of the value function. ESAIM (2017). https://doi.org/10.1051/cocv/2017006

  3. Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60(1–2), 57–83 (1997)

    Article  MathSciNet  Google Scholar 

  4. Becherer, D.: Bounded solutions to backward SDE’s with jumps for utility optimization and indifference hedging. Ann. Appl. Probab. 16(4), 2027–2054 (2006). https://doi.org/10.1214/105051606000000475

    Article  MathSciNet  MATH  Google Scholar 

  5. Brémaud, P.: Point Processes and Queues. Martingale Dynamics, Springer Series in Statistics. Springer-Verlag, New York, Berlin, pp. xviii+354 (1981)

  6. Cohen, S.N., Elliott, R.J.: Existence, uniqueness and comparisons for BSDEs in general spaces. Ann. Probab. 40(5), 2264–2297 (2012). https://doi.org/10.1214/11-AOP679

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, S.N., Elliott, R.J., Pearce, C.E.M.: A general comparison theorem for backward stochastic differential equations. Adv. Appl. Probab. 42(3), 878–898 (2010). https://doi.org/10.1239/aap/1282924067

    Article  MathSciNet  MATH  Google Scholar 

  8. Confortola, F.: “\({L}^p\) solution of backward stochastic differential equations driven by a marked point process”. In: arXiv preprint arXiv:1611.10157 (2016)

  9. Confortola, F., Fuhrman, M.: Backward stochastic differential equations associated to jump Markov processes and applications. Stoch. Process. Appl. 124(1), 289–316 (2014). https://doi.org/10.1016/j.spa.2013.07.010

    Article  MathSciNet  MATH  Google Scholar 

  10. Confortola, F., Fuhrman, M., Jacod, J.: Backward stochastic differential equation driven by a marked point process: an elementary approach with an application to optimal control. Ann. Appl. Probab. 26(3), 1743–1773 (2016). https://doi.org/10.1214/15-AAP1132

    Article  MathSciNet  MATH  Google Scholar 

  11. Crépey, S.: Financial modeling. Springer Finance. A backward stochastic differential equations perspective. Springer Finance Textbooks Springer, Heidelberg, pp. xx+459 (2013). https://doi.org/10.1007/978-3-642-37113-4

  12. Crépey, S., Matoussi, A.: Reflected and doubly reflected BSDEs with jumps: a priori estimates and comparison. Ann. Appl. Probab. 18(5), 2041–2069 (2008). https://doi.org/10.1214/08-AAP517

    Article  MathSciNet  MATH  Google Scholar 

  13. Dellacherie, C., Meyer, P.A.: Probabilités et potentiel. Chapitres V à VIII. Revised. Vol. 1385. Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics]. Théorie des martingales. [Martingale theory]. Hermann, Paris, pp. xviii+476 (1980)

  14. El Karoui, N.: Les aspects probabilistes du contrôle stochastique. In: Ninth Saint Flour Probability Summer School—1979 (Saint Flour, 1979). vol. 876. Lecture Notes in Math. Springer, Berlin-New York pp. 73–238 (1981)

  15. El Karoui, N., Huang, S.J.: A general result of existence and uniqueness of backward stochastic differential equations. In: Backward stochastic differential equations (Paris, 1995–1996). vol. 364. Pitman Res. Notes Math. Ser. Longman, Harlow, pp. 27–36. (1997)

  16. El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Financ. 7(1), 1–71 (1997). https://doi.org/10.1111/1467-9965.00022

    Article  MathSciNet  MATH  Google Scholar 

  17. El Karoui, N., et al.: Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25(2), 702–737 (1997). https://doi.org/10.1214/aop/1024404416

    Article  MathSciNet  MATH  Google Scholar 

  18. El Otmani, M.: Reflected BSDE driven by a Lévy process. J. Theor. Probab. 22(3), 601–619 (2009). https://doi.org/10.1007/s10959-009-0229-3

    Article  MATH  Google Scholar 

  19. Essaky, E.H., Hassani, M.: General existence results for reflected BSDE and BSDE. Bull. Sci. Math. 135(5), 442–466 (2011). https://doi.org/10.1016/j.bulsci.2011.04.003

    Article  MathSciNet  MATH  Google Scholar 

  20. Grigorova, M. et al.: “Optimal stopping with f-expectations: the irregular case”. In: arXiv preprint arXiv:1611.09179 (2016)

  21. Grigorova, M., et al.: Reflected BSDEs when the obstacle is not right-continuous and optimal stopping. Ann. Appl. Probab. 27(5), 3153–3188 (2017)

    Article  MathSciNet  Google Scholar 

  22. Hamadène, S.: Reflected BSDE’s with discontinuous barrier and application. Stoch. Stoch. Rep. 74(3–4), 571–596 (2002). https://doi.org/10.1080/1045112021000036545

    Article  MathSciNet  MATH  Google Scholar 

  23. Hamadène, S., Ouknine, Y.: Reflected backward stochastic differential equation with jumps and random obstacle. Electron. J. Probab. 8(2), 20 (2003). https://doi.org/10.1214/EJP.v8-124

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamadène, S., Ouknine, Y.: Reflected backward SDEs with general jumps. Theory Probab. Appl. 60(2), 263–280 (2016). https://doi.org/10.1137/S0040585X97T987648

    Article  MathSciNet  MATH  Google Scholar 

  25. He, S.W., Wang, J.G., Yan, J.A.: Semimartingale theory and stochastic calculus. Kexue Chubanshe (Science Press), Beijing; CRC Press, Boca Raton, FL, pp. xiv+546 (1992)

  26. Jacod, J.: Multivariate point processes: predictable projection, Radon-Nikodým derivatives, representation of martingales. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31, 235–253 (1974/75). https://doi.org/10.1007/BF00536010

  27. Karatzas, I., Shreve, S.E.: Methods of mathematical finance. vol. 39. Applications of Mathematics (New York). Springer-Verlag, New York, pp. xvi+407 (1998). https://doi.org/10.1007/b98840

  28. Kobylanski, M., Quenez, M.C.: Optimal stopping time problem in a general framework. Electron. J. Probab. 17(72), 28 (2012). https://doi.org/10.1214/EJP.v17-2262

    Article  MathSciNet  MATH  Google Scholar 

  29. Last, G., Brandt, A.: Marked point processes on the real line. Probability and its Applications (New York). The dynamic approach. Springer-Verlag, New York, pp. xiv+490 (1995)

  30. Lepeltier, J.P., Xu, M.: Reflected backward stochastic differential equations with two RCLL barriers. ESAIM Probab. Stat. 11, 3–22 (2007). https://doi.org/10.1051/ps:2007002

    Article  MathSciNet  MATH  Google Scholar 

  31. Papapantoleon, A., Possamaï, D., Saplaouras, A.: “Existence and uniqueness results for bsdes with jumps: the whole nine yards”. In: arXiv preprint arXiv:1607.04214 (2016)

  32. Pardoux, E., Peng, S.G.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990). https://doi.org/10.1016/0167-6911(90)90082-6

    Article  MathSciNet  MATH  Google Scholar 

  33. Pardoux, E., Răşcanu, A.: Stochastic differential equations, backward SDEs, partial differential equations. vol. 69. Stochastic Modelling and Applied Probability, Springer, Cham, pp. xviii+667 (2014). https://doi.org/10.1007/978-3-319-05714-9

  34. Peng, S., Xu, M.: The smallest \(g\)-supermartingale and reflected BSDE with single and double \(L^2\) obstacles. Ann. Inst. H. Poincaré Probab. Stat. 41(3), 605–630 (2005). https://doi.org/10.1016/j.anihpb.2004.12.002

    Article  MATH  Google Scholar 

  35. Peskir, G., Shiryaev, A.: Optimal stopping and free-boundary problems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, pp. xxii+500 (2006)

  36. Ren, Y., El Otmani, M.: Generalized reflected BSDEs driven by a Lévy process and an obstacle problem for PDIEs with a nonlinear Neumann boundary condition. J. Comput. Appl. Math. 233(8), 2027–2043 (2010). https://doi.org/10.1016/j.cam.2009.09.037

    Article  MathSciNet  MATH  Google Scholar 

  37. Ren, Y., Hu, L.: Reflected backward stochastic differential equations driven by Lévy processes. Stat. Probab. Lett. 77(15), 1559–1566 (2007). https://doi.org/10.1016/j.spl.2007.03.036

    Article  MATH  Google Scholar 

  38. Tang, S.J., Li, X.J.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994). https://doi.org/10.1137/S0363012992233858

    Article  MathSciNet  MATH  Google Scholar 

  39. Xia, J.: Backward stochastic differential equation with random measures. Acta Math. Appl. Sin. 16(3), 225–234 (2000). https://doi.org/10.1007/BF02679887

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahuel Foresta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by the Italian MIUR-PRIN 2015 “Deterministic and stochastic evolution equations” and INDAM-GNAMPA.

Some Remarks on the Snell Envelope Theory

Some Remarks on the Snell Envelope Theory

The Snell envelope theory has been treated in various works. [14] considers the case for a positive process without any restrictions on the filtration, obtaining general results. For a bit less general results, but still enough for our work, [27] develops the theory for non-negative càdlàg processes, while [35] treats the case where the process is càdlàg and left continuous over stopping times, and satisfies the condition

$$\begin{aligned} \mathbb {E}\left[ \sup _t|\eta _t|\right] <\infty . \end{aligned}$$
(A.1)

The recent work [28] treats the subject in the framework of family of random variables indexed by stopping times, using quite general assumptions. In the following, let \((\varOmega ,\mathscr {F},\mathbb {P})\) be a probability space and let \(\mathbb {F}=\left( \mathscr {F}_t\right) _{t\ge 0}\) be a filtration satisfying the usual conditions. Let \(\eta \) be a cadlag process. Several properties that hold for positive processes can be shown under the condition (A.1), as we will see in Proposition A.1.

We recall the following definition:

Definition A.1

An optional process R of class [D] is said to be regular if \(R_{t^-}={^p}R_t\) for any \( t<T \), where \({^p}X\) indicates the predictable projection.

Proposition A.1

Let \(\eta \) be a càdlàg process satisfying (A.1). Define

$$\begin{aligned} R_t=\mathop {\mathrm{ess\,sup}}\limits _{\tau \in \mathscr {T}_t}\mathbb {E}\left[ \eta _\tau \bigg \vert \mathscr {F}_t\right] \end{aligned}$$
(A.2)

It holds that

  1. (i)

    \(R_t\) is the Snell envelope of \(\eta _t\). This means it is the smallest càdlàg supermartingale that dominates \(\eta _t\), i.e. \(R_t\ge \eta _t\) for all \(t\ \mathbb {P} \)-a.s.

  2. (ii)

    A stopping time \(\tau ^*\) is optimal in (A.2) (i.e. \(R_t=\mathbb {E}\left[ \eta _{\tau ^*}\bigg \vert \mathscr {F}_t\right] \)) if and only if one of the following conditions hold

    • \(R_{\tau ^*}=\eta _{\tau ^*} \text { and } R_{s\wedge \tau ^*} \text {is a }\mathbb {F}\text {-martingale}\)

    • \(\mathbb {E}[R_t]=\mathbb {E}[\eta _\tau ^*]\)

  3. (iii)

    \(R_t\) is of class [D], hence it admits decomposition

    $$\begin{aligned} R_t=M_t-K_t, \end{aligned}$$

    where M is a martingale, K a predictable increasing process with \(K_0=0\). K can be decomposed as \(K=K_t^c+K_t^d\), where \(K^c\) indicates the continuous part and \(K^d\) the discontinuous part. Moreover we have, a.s.

    $$\begin{aligned} \begin{array}{c} \left\{ t:\varDelta K_t>0\right\} \subset \left\{ t: R_{t^-}=\eta _{t^-}\right\} \\ \text {or equivalently, }\quad \varDelta K_t=\varDelta K_t \mathbb {1}_{\{R(\eta )_{t^-}=\eta _{t^-} \}}, \quad t\ge 0. \end{array} \end{aligned}$$
  4. (iv)

    If the process \(R_t\) is regular in the sense that \(R_{t^-}={^p}R_t\), where \({^p}R\) indicates the predictable projection, defining the stopping time

    $$\begin{aligned} D_t^*=\inf \lbrace s\ge t : R_s\ne M_s\rbrace , \end{aligned}$$

    then \(D_t^*\) is an optimal stopping time and it is in fact the largest optimal stopping time.

Proof

Define

$$\begin{aligned} I=\inf \limits _{t\in [0,T]}\eta _t \qquad \text { and } \qquad N_t=\mathbb {E}\left[ I\bigg \vert \mathscr {F}_t\right] , \end{aligned}$$

and since \(\eta _t-I\ge 0\) for all t, we have \(\eta _t-N_t\ge 0\) for all t. \(N_t\) is a uniformly integrable martingale thanks to (A.1). Consider \(\tilde{\eta }_t=\eta _t-N_t\ge 0\) and \(\tilde{R}_t=R_t-N_t\). Notice that then

$$\begin{aligned} \tilde{R}_t=R_t-N_t=\mathop {\mathrm{ess\,sup}}\limits _{\tau \in \mathscr {T}_t} \mathbb {E}\left[ \eta _\tau -N_\tau \bigg \vert \mathscr {F}_t\right] =\mathop {\mathrm{ess\,sup}}\limits _{\tau \in \mathscr {T}_t} \mathbb {E}\left[ \tilde{\eta }_\tau \bigg \vert \mathscr {F}_t\right] , \end{aligned}$$

i.e. \(\tilde{R}\) is the Snell envelope of the positive process \(\tilde{\eta }\). R inherits all the properties from \(\tilde{R}\). Let us see why the fourth property holds, as the rest are obtained similarly.

If \(R_t\) is regular, so is \(\tilde{R}_t\) because we are adding a uniformly integrable martingale, which is regular (all uniformly quasi-left-continuous integrable càdlàg martingales are regular, see [25] Def 5.49). The result then holds by [14], p. 140. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foresta, N. Optimal Stopping of Marked Point Processes and Reflected Backward Stochastic Differential Equations. Appl Math Optim 83, 1219–1245 (2021). https://doi.org/10.1007/s00245-019-09585-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09585-y

Keywords

Navigation