Skip to main content
Log in

Discrete-Time Control for Systems of Interacting Objects with Unknown Random Disturbance Distributions: A Mean Field Approach

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We are concerned with stochastic control systems composed of a large number of N interacting objects sharing a common environment. The evolution of each object is determined by a stochastic difference equation where the random disturbance density \(\rho \) is unknown for the controller. We present the Markov control model (N-model) associated to the proportions of objects in each state, which is analyzed according to the mean field theory. Thus, combining convergence results as \(N\rightarrow \infty \) (the mean field limit) with a suitable statistical estimation method for \(\rho \), we construct the so-named eventually asymptotically optimal policies for the N-model under a discounted optimality criterion. A consumption-investment problem is analyzed to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, I., Capuzzo-Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48, 1136–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aoki, M.: New macroeconomic modeling approaches. Hierarchical dynamics and mean field approximation. J. Econ. Dyn. Control 18, 865–877 (1994)

    Article  MATH  Google Scholar 

  3. Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Control Theory. Springer, New York (2010)

    MATH  Google Scholar 

  4. Bertsekas, D.P.: Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  5. Budhiraja, A., Dupuis, P., Fischer, M.: Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40, 74–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carmona, R., Fouque, J.P., Vestal, D.: Interacting particle systems for the computation of rare credit portfolio losses. Financ. Stoch. 13, 613–633 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gast, N., Gaujal, B.: A mean field approach for optimization in discrete time. Discret. Event Dyn. Syst. 21, 63–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gast, N., Gaujal, B., Le Boudec, J.Y.: Mean field for Markov decision processes: from discrete to continuous optimization. IEEE Trans. Autom. Control 57, 2266–2280 (2012)

    Article  MathSciNet  Google Scholar 

  9. Gomes, D.A., Mohr, J., Souza, R.R.: Discrete time, finite state space mean field games. J. Math. Pures Appl. 93, 308–328 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gordienko, E.I., Minjárez-Sosa, J.A.: Adaptive control for discrete-time Markov processes with unbounded costs: discounted criterion. Kybernetika 34, 217–234 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Hernández-Lerma, O.: Adaptive Markov Control Processes. Springer, New York (1989)

    Book  MATH  Google Scholar 

  12. Hernández-Lerma, O., Lasserre, J.B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer, New York (1996)

    Book  MATH  Google Scholar 

  13. Hilgert, N., Minjárez-Sosa, J.A.: Adaptive control of stochastic systems with unknown disturbance distribution: discounted criterion. Math. Method Oper. Res. 63, 443–460 (2006)

    Article  MATH  Google Scholar 

  14. Huang, M.: Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J. Control Optim. 48, 3318–3353 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kolokoltsov, V.N., Troeva, M., Yang, W.: On the rate of convergence for the mean-field approximation of controlled diffusions with large number of players. Dyn. Games Appl. 4, 208–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lachapelle, A., Salomon, J., Turinici, G.: Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20, 567–588 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence result for systems of interacting objects. In: 4th International Conference Quantitative Evaluation of Systems (2007). ISBN:0-7695-2883-X/07

  18. Lasry, J.M., Lions, P.L.: Mean field games. Jap. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Minjárez-Sosa, J.A., Vega-Amaya, O.: Asymptotically optimal strategies for adaptive zero-sum discounted Markov games. SIAM J. Control Optim. 48, 1405–1421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peyrard, N., Sabbadin, R.: Mean field approximation of the policy iteration algorithm for graph-based Markov decision processes. In: Biewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Frontiers in Artificial Intelligence and Applications, pp. 595–599. IOS Press, Amsterdam (2006)

    Google Scholar 

  21. Puterman, M.L.: Markov Decision Processes. Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    MATH  Google Scholar 

Download references

Acknowledgments

Work partially supported by Consejo Nacional de Ciencia y Tecnologia (CONACyT) under Grants CB2015/254306 and CB2015/238045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Adolfo Minjárez-Sosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higuera-Chan, C.G., Jasso-Fuentes, H. & Minjárez-Sosa, J.A. Discrete-Time Control for Systems of Interacting Objects with Unknown Random Disturbance Distributions: A Mean Field Approach. Appl Math Optim 74, 197–227 (2016). https://doi.org/10.1007/s00245-015-9312-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-015-9312-6

Keywords

Mathematics Subject Classification

Navigation