Skip to main content

Advertisement

Log in

Optimal Stopping of a Hilbert Space Valued Diffusion: An Infinite Dimensional Variational Inequality

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

A finite horizon optimal stopping problem for an infinite dimensional diffusion X is analyzed by means of variational techniques. The diffusion is driven by a SDE on a Hilbert space \(\mathcal {H}\) with a non-linear diffusion coefficient \(\sigma (X)\) and a generic unbounded operator A in the drift term. When the gain function \(\Theta \) is time-dependent and fulfils mild regularity assumptions, the value function \(\mathcal {U}\) of the optimal stopping problem is shown to solve an infinite-dimensional, parabolic, degenerate variational inequality on an unbounded domain. Once the coefficient \(\sigma (X)\) is specified, the solution of the variational problem is found in a suitable Banach space \(\mathcal {V}\) fully characterized in terms of a Gaussian measure \(\mu \). This work provides the infinite-dimensional counterpart, in the spirit of Bensoussan and Lions (Application of variational inequalities in stochastic control, 1982), of well-known results on optimal stopping theory and variational inequalities in \(\mathbb {R}^n\). These results may be useful in several fields, as in mathematical finance when pricing American options in the HJM model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(\ell _2\) denotes the set of infinite vectors \(x:=(x_1,x_2,\ldots )\) such that \(\sum _{k}{x_k^2}<+\infty \).

  2. The proof relies on the fact that the set of continuous functions is dense in \(L^p(\mathcal {H},\mu )\) and goes through a finite-dimensional reduction, a localization and the Stone-Weierstrass theorem.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, London (1975)

    MATH  Google Scholar 

  2. Barbu, V., Marinelli, C.: Variational inequalities in Hilbert spaces with measures and optimal stopping problems. Appl. Math. Optim. 57, 237–262 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbu, V., Sritharan, S.S.: Optimal stopping-time problem for stochastic Navier-Stokes equations and infinite-dimensional variational inequalities. Nonlinear Anal. 64, 1018–1024 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bensoussan, A., Lions, J.L.: Applications of Variational Inequalities in Stochastic Control. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  5. Bogachev, V.I.: Gaussian Measures. American Mathematical Society (1997)

  6. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2010)

  7. Chiarolla, M.B., De Angelis, T.: Analytical pricing of American put options on a zero coupon bond in the Heath-Jarrow-Morton model. Stoch. Process. 125, 678–707 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chow, P.L., Menaldi, J.L.: Variational Inequalities for the Control of Stochastic Partial Differential Equations. Stochastic Partial Differential Equations and Applications II, Lecture Notes in Mathematics, Springer, Berlin, pp. 42–52 (1989)

  9. Da Prato, G.: An Introduction to Infinite-Dimensional Analysis. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  10. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  11. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  12. De Angelis, T.: Pricing American Bond Options under HJM: An Infinite Dimensional Variational Inequality. Ph.D thesis (2012)

  13. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, London (1969)

    MATH  Google Scholar 

  14. El Karoui, N.: Les Aspects Probabilistes du Contrôle Stochastique. In: 9th Saint Flour Probability Summer School, Lecture Notes in Math. 876, Springer, Berlin, pp. 73–238 (1979)

  15. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd ed. Stochastic Modelling and Applied Probability 25, Springer, New York

  16. Ga̧tarek, D., Świȩch, A.: Optimal stopping in Hilbert spaces and pricing of American options. Math. Methods Oper. Res. 50, 135–147 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kelome, D., Świȩch, A.: Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation. Appl. Math. Optim. 47, 253–278 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krylov, N.V.: Controlled Diffusion Processes. Springer, Berlin (2009)

    MATH  Google Scholar 

  19. Lions, P.L.: Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. I. The case of bounded stochastic evolutions. Acta Math. 3–4, 243–278 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lions, P.L.: Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. II. Optimal control of Zakai’s equation. Lecture Notes in Math., 1390, Springer, Berlin, pp. 147–170 (1989)

  21. Lions, P.L.: Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equations. J. Funct. Anal. 86(1), 1–18 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, Z.M., Röckner, M.: Introduction to the theory of (non-symmetric) dirichlet forms. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  23. Marcozzi, M.D.: On the approximation of infinite dimensional optimal stopping problems with application to mathematical finance. J. Sci Comput. 34, 287–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Menaldi, J.L.: On the optimal stopping time problem for degenerate diffusions. SIAM J. Control Optim. 18(6), 697–721 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Menaldi, J.L.: On Degenerate Variational and Quasi-Variational Inequalities of parabolic Type. Analysis and Optimization of Systems, Lecture notes in Control and Information Sciences, vol. 28, pp. 338–356 (1980)

  26. Pazy, A.: Semigroups of Linear Operator and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  27. Shiryaev, A.N.: Optimal Stopping Rules. Springer, Berlin (1978)

    MATH  Google Scholar 

  28. Stroock, D., Varadhan, S.R.S.: On degenerate elliptic-parabolic operators of second order and their associated diffusions. Comm. Pure Appl. Math. 25, 651–713 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  29. Świȩch, A.: “Unbounded” second order partial differential equations in infinite-dimensional Hilbert spaces. Comm. Partial Differ. Equ. 19(11–12), 1999–2036 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Zabczyk, J.: Stopping Problems in Stochastic Control. In: Proceedings of the International Congress of Mathematicians, vol. 1–2, PWN, Warsaw, pp. 1425–1437 (1984)

  31. Zabczyk, J.: Stopping Problems on Polish Spaces. Ann. Univ. Mariae Curie-Sklodowska, 51 Vol. 1.18 pp. 181–199 (1997)

  32. Zabczyk, J.: Bellman’s inclusions and excessive measures. Probab. Math. Statist. 21(1), 101–122 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

During this work the second named author was funded by the University of Rome “La Sapienza” through the Ph.D programme in Mathematics for Economic-Financial Applications and by the EPSRC Grant EP/K00557X/1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziano De Angelis.

Additional information

These results extend a portion of the second Author Ph.D. dissertation [12] under the supervision of the first Author. Both Authors wish to thank Franco Flandoli and Claudio Saccon for their helpful comments and suggestions.

Appendix

Appendix

Proof of Proposition 4.1

Fix \((t,x^{(n)})\in [0,T]\times \mathbb {R}^n\) and take \(\overline{R}>0\) such that \(x^{(n)}\in \mathcal {O}_{\overline{R}}\). Now for all \(R\ge \overline{R}\) we have

$$\begin{aligned} 0&\le \mathcal {U}^{(n)}_{\alpha }(t,x^{(n)})-\mathcal {U}^{(n)}_{\alpha ,R}(t,x^{(n)})\\&\le \sup _{t\le \sigma \le T}\mathbb {E}\left\{ \left( \Theta ^{(n)}(\sigma ,X^{(\alpha )t,x;n}_{\sigma })-\Theta ^{(n)} (\tau _{R}, X^{(\alpha )t,x;n}_{\tau _{R}})\right) I_{\{\sigma >\tau _{R}\}}\right\} \!\le \! 2\,\overline{\Theta }\,\mathbb {P}\big (\tau _R\!<\!T\big ), \end{aligned}$$

by (2.11) and with \(I_{\{\sigma >\tau _{R}\}}\) the indicator function of the set \(\{\sigma >\tau _{R}\}\). By Markov inequality and standard estimates for strong solutions of SDEs in \(\mathbb {R}^n\) (cf. for instance [18] Chapter 2, Section 5, Corollary 12), it follows

$$\begin{aligned} \mathbb {P}\big (\tau _R<T\big )&\le \mathbb {P}\Big (\sup _{t\le s\le T}\big \Vert X^{(\alpha )t,x;n}_s-x^{(n)}\big \Vert _{\mathbb {R}^n}>R-\overline{R}\Big )\\&\le \frac{\mathbb {E}\Big \{\sup _{t\le s\le T}\big \Vert X^{(\alpha )t,x;n}_s\!-\!x^{(n)}\big \Vert _{\mathbb {R}^n}\Big \}}{(R-\overline{R})}\!\le \! C_{n,\alpha ,T}\Big (1\!+\!\big \Vert x^{(n)}\big \Vert _{\mathbb {R}^n}\Big )\frac{(T\!-\!t)^{\frac{1}{2}}}{(R\!-\!\overline{R})} \end{aligned}$$

with \(C_{n,\alpha ,T}>0\), only depending on \((\alpha ,n,T)\) and bounds on \(\sigma \).

Therefore

$$\begin{aligned} \lim _{R\rightarrow \infty }\sup _{(t,x^{(n)})\in [0,T]\times \mathcal {K}}\big |\mathcal {U}^{(n)}_{\alpha ,R}(t,x^{(n)})-\mathcal {U}^{(n)}_{\alpha }(t,x^{(n)})\big |=0 \end{aligned}$$

for every compact subset \(\mathcal {K}\subset \mathbb {R}^n\). If all \(\mathcal {U}^{(n)}_{\alpha ,R}\), are continuous, then \(\mathcal {U}^{(n)}_{\alpha }\) is continuous on every compact subset \([0,T]\times \mathcal {K}\) and this is enough for global continuity in \(\mathbb {R}^n\). \(\square \)

Proof of Corollary 4.3

By the regularity of \(\bar{u}\) in Corollary 4.2, it is well known that the expression (4.11) is equivalent to

$$\begin{aligned} \max \left\{ \frac{\partial \bar{u}}{\partial t}+\mathcal {L}_{\alpha ,n}\bar{u}+f_{\alpha ,n},\,-\bar{u}\right\} =0, \qquad \text {a.e.}\,\in [0,T]\times \overline{\mathcal {O}}_R. \end{aligned}$$

(see for instance [4], Chapter 3, Section 1, p. 191).

The regularity of \(\partial \mathcal {O}_R\) and [1], Theorem 3.22 enable us to find a sequence \((u_j)_{j\in \mathbb {N}}\), such that \(u_j\in C^\infty _c(\mathbb {R}^{n+1})\) and

$$\begin{aligned} \Vert u_j-\bar{u}\Vert _{W^{1\,2,p}((0,T)\times \mathcal {O}_R)}\rightarrow 0\quad \text {as}\quad \,j\rightarrow \infty . \end{aligned}$$
(6.1)

In fact it suffices to take a partition of the domain and use the standard mollification on each element of the partition. Then (6.1) follows from the usual properties of the mollifiers and the fact that the operators \(\partial _t\), D and \(D^2\) are closed in \(L^p\). Moreover, the continuity of \(\bar{u}\) and that of a suitable extension to \(\mathbb {R}^{n+1}\) imply that the convergence is also uniform on any compact set \(\mathcal {O}^\prime \) such that \([0,T]\times \overline{\mathcal {O}}_R\subset \mathcal {O}^\prime \); that is

$$\begin{aligned} \Vert u_j-\bar{u}\Vert _{L^\infty }\rightarrow 0,\qquad \,\text {as}\,j\rightarrow \infty ,\quad \text {on}\quad \,\mathcal {O}^{\prime }. \end{aligned}$$
(6.2)

Now we fix an arbitrary \(t\in [0,T]\) and a stopping time \(\tau \in [t,T]\). An application of Dynkin’s formula from t to \(\tau \wedge \tau _R\) gives

$$\begin{aligned}&{\mathbb {E}}\left\{ u_j(\tau \wedge \tau _{R},X^{(\alpha )t,x;n}_{\tau \wedge \tau _{R}})\right\} =u_j(t,x^{(n)})\nonumber \\&\quad +\mathbb {E} \left\{ \int _t^{\tau \wedge \tau _{R}}{\left( \frac{\partial u_j}{\partial s}+\mathcal {L}_{\alpha ,n}u_j\right) (s,X^{(\alpha )t,x;n}_s)ds}\right\} . \end{aligned}$$
(6.3)

On the other hand by [4], Chapter 2, Lemma 8.1 there exists a constant \(C_{T,R}>0\) such that

$$\begin{aligned}&\left| \mathbb {E}\left\{ \int _t^{\tau \wedge \tau _{R}}{\left( \frac{\partial }{\partial s}+\mathcal {L}_{\alpha ,n}\right) \left( u_j-\bar{u}\right) (s,X^{(\alpha )t,x;n}_s)ds}\right\} \right| \nonumber \\&\quad \le C_{T,R}\left\| \left( \frac{\partial }{\partial s}+\mathcal {L}_{\alpha ,n}\right) \left( u_j-\bar{u}\right) \right\| _{L^2((0,T)\times \mathcal {O}_R)}, \end{aligned}$$
(6.4)

hence by taking the limit as \(j\rightarrow \infty \) and by using (6.1) and (6.2) we obtain

$$\begin{aligned}&\mathbb {E}\left\{ \bar{u}(\tau \wedge \tau _{R},X^{(\alpha )t,x;n}_{\tau \wedge \tau _{R}})\right\} =\bar{u}(t,x^{(n)})\nonumber \\&\quad +\mathbb {E} \left\{ \int _t^{\tau \wedge \tau _{R}}{\left( \frac{\partial \bar{u}}{\partial s}+\mathcal {L}_{\alpha ,n}\bar{u}\right) (s,X^{(\alpha )t,x;n}_s)ds}\right\} \,\quad \text {for all}\quad \,\tau \in [t,T]. \end{aligned}$$
(6.5)

Recall that (4.12) holds almost everywhere in \((0,T)\times \mathcal {O}_R\) and, being the diffusion uniformly non degenerate, the law of \(X^{(\alpha )t,x;n}\) is absolutely continuous with respect to the Lebesgue measure on \((0,T)\times \mathcal {O}_R\). Then

$$\begin{aligned} \bar{u}(t,x^{(n)})\ge \mathbb {E}\left\{ \int _t^{\tau \wedge \tau _R}{f_{\alpha ,n}(s,X^{(\alpha )t,x;n}_s)ds}\right\} \qquad \text {for all}\,\tau \in [t,T]; \end{aligned}$$
(6.6)

in particular, with \(\tau ^\star \) defined by

$$\begin{aligned} \tau ^\star :=\inf \{s\ge t\,:\,\bar{u}(s,X^{(\alpha )t,x;n}_s)=0\}\wedge {{\tau _R}}\wedge T, \end{aligned}$$
(6.7)

(4.12) implies

$$\begin{aligned} \bar{u}(t,x^{(n)})=\mathbb {E}\left\{ \int _t^{{{\tau ^\star }}}{f_{\alpha ,n}(s,X^{(\alpha )t,x;n}_s)ds}\right\} . \end{aligned}$$
(6.8)

Therefore, by using (4.10) and by recalling (4.2) we have

$$\begin{aligned} \bar{u}(t,x^{(n)})&=\sup _{t\le \tau \le T}\mathbb {E}\left\{ \int _t^{\tau \wedge \tau _R}{\left( \frac{\partial \Theta ^{(n)}}{\partial s}+\mathcal {L}_{\alpha ,n}\Theta ^{(n)}\right) (s,X^{(\alpha )t,x;n}_s)ds}\right\} \nonumber \\&=\sup _{t\le \tau \le T}\mathbb {E}\left\{ \Theta ^{(n)}(\tau \wedge \tau _R,X^{(\alpha )t,x;n}_{\tau \wedge \tau _R})\right\} -\Theta ^{(n)}(t,x)\nonumber \\&=\mathcal {U}^{(n)}_{\alpha ,R}(t,x)-\Theta ^{(n)}(t,x). \end{aligned}$$
(6.9)

It now follows that \(\bar{u}=u^{(n)}_{\alpha ,R}\) and \(\tau ^\star =\tau ^\star _{\alpha ,n,R}\).

Notice that for any stopping time \(\tau \le \tau ^\star _{\alpha ,n,R}\), combining (6.9) and (6.5) gives

$$\begin{aligned} \mathcal {U}^{(n)}_{\alpha ,R}(t,x^{(n)})=\mathbb {E}\left\{ \mathcal {U}^{(n)}_{\alpha ,R}({{\tau }},X^{(\alpha )t,x;n} _{{{\tau }}})\right\} , \end{aligned}$$
(6.10)

i.e. the dynamic programming principle for \(\mathcal {U}^{(n)}_{\alpha ,R}\) holds. \(\square \)

Proof of Lemma 4.6

Set \(u^R:=u^{(n)}_{\alpha ,R}\) and recall Corollary 4.3. An application of Dynkin’s formula based on the same arguments as those that lead to (6.5) gives

$$\begin{aligned} \mathbb {E}&\left\{ e^{-\int ^{\tau ^x_R}_t{\,\frac{1}{\varepsilon }\nu (s)ds}}\,u^R\big (\tau ^x_R,X^{(\alpha )t,x;n}_{\tau ^x_R}\big )- e^{-\int ^{\tau ^x_R\wedge \tau ^y_R}_t{\,\frac{1}{\varepsilon }\nu (s)ds}}\,u^R\big (\tau ^x_R\wedge \tau ^y_R,X^{(\alpha )t,x;n}_{\tau ^x_R\wedge \tau ^y_R}\big )\right\} \nonumber \\ \le&-\mathbb {E}\left\{ \int ^{\tau ^x_R}_{\tau ^x_R\wedge \tau ^y_R}{ e^{-\int ^s_t{\frac{1}{\varepsilon }\nu (u)du}}f_{\alpha ,n}\big (s,X^{(\alpha )t,x;n}_s\big )ds}\right\} . \end{aligned}$$
(6.11)

For the left-hand side of (6.11) we observe that on the set \(\big \{\tau ^x_R\le \tau ^y_R\big \}\) the difference inside the expectation is zero, whereas on the set \(\big \{\tau ^x_R>\tau ^y_R\big \}\) one has

$$\begin{aligned} u^R\big (\tau ^x_R,X^{(\alpha )t,x;n}_{\tau ^x_R}\big )=0=u^R\big (\tau ^x_R\wedge \tau ^y_R,X^{(\alpha )t,y;n}_{\tau ^x_R\wedge \tau ^y_R}\big )\qquad \mathbb {P}-\text { a.s.} \end{aligned}$$
(6.12)

Therefore from (6.11), (4.9), (2.12), (2.20) and Lemma 2.9 we obtain

$$\begin{aligned} \mathbb {E}\bigg \{\int ^{\tau ^x_R}_{\tau ^x_R\wedge \tau ^y_R}&{ e^{-\int ^s_t{\frac{1}{\varepsilon }\nu (u)du}}f_{\alpha ,n}\big (s,X^{(\alpha )t,x;n}_s\big )ds}\bigg \}\nonumber \\ \le&\mathbb {E}\left\{ \big |u^R\big (\tau ^x_R\wedge \tau ^y_R,X^{(\alpha )t,y;n}_{\tau ^x_R\wedge \tau ^y_R}\big )- u^R\big (\tau ^x_R\wedge \tau ^y_R,X^{(\alpha )t,x;n}_{\tau ^x_R\wedge \tau ^y_R}\big )\big |\right\} \\ \le&\big (L_\Theta +L_\mathcal {U}\big )C_{1,T}\big \Vert x^{(n)}-y^{(n)}\big \Vert _{\mathcal {H}}.\nonumber \end{aligned}$$
(6.13)

To obtain (4.17) we need to find a similar bound for the first member of (6.13) but from below. For that we introduce the auxiliary problem

$$\begin{aligned} v^R(t,x^{(n)}):=\inf _{t\le \tau \le T}\mathbb {E}\left\{ \int _t^{\tau \wedge \tau _R}{f_{\alpha ,n}(s,X^{(\alpha )t,x;n}_s)ds}\right\} \qquad \text {for } (t,x^{(n)})\in [0,T]\times \mathbb {R}^n \end{aligned}$$
(6.14)

and we observe that same arguments as those used to obtain Proposition 4.2 and Corollary 4.3 give \(v^R\in L^p(0,T;W^{1,p}_0(\mathcal {O}_R))\cap L^p(0,T;W^{2,p}(\mathcal {O}_R))\) and \(\frac{\partial \,v^R}{\partial \,t}\in L^p(0,T;L^p(\mathcal {O}_R))\), for all \(1\le p<+\infty \). Moreover \(v^R\) uniquely solves, in the almost everywhere sense, the obstacle problem

$$\begin{aligned} \left\{ \begin{array}{ll} \max \left\{ -\displaystyle {\frac{\partial v}{\partial t}}-\mathcal {L}_{\alpha ,n}v-f_{\alpha ,n},\,v\right\} (t,x^{(n)})= 0,\qquad (t,x^{(n)})\in (0,T)\!\times \!\mathcal {O}_R, &{}\\ v(t,x^{(n)})\le 0\quad \text {on}\quad [0,T]\times \overline{\mathcal {O}}_R;\quad v(T,x^{(n)})\!=\!0,\qquad x^{(n)}\!\in \!\overline{\mathcal {O}}_R.&{}\\ \end{array} \right. \nonumber \\ \end{aligned}$$
(6.15)

Again, by arguing as above for (6.11) and by replacing \(u^R\) by \(v^R\), the reversed inequality is obtained. Hence, the analogous for \(v^R\) of (6.12) gives

$$\begin{aligned} \mathbb {E}\bigg \{\int ^{\tau ^x_R}_{\tau ^x_R\wedge \tau ^y_R}{e^{-\int ^s_t{\frac{1}{\varepsilon }\nu (u)du}}f_{\alpha ,n}\big (s,X^{(\alpha )t,x;n}_s\big )ds}\bigg \}\ge -\big (L_\Theta +L_\mathcal {U}\big )C_{1,T}\big \Vert x^{(n)}-y^{(n)}\big \Vert _{\mathcal {H}}. \end{aligned}$$
(6.16)

Now (4.17) follows by (6.13) and (6.16). \(\square \)

Proof of Lemma 4.7

It is enough to show that \(\Vert u^R_\varepsilon (t,x^{(n)})-u^R_\varepsilon (t,y^{(n)})\Vert \le L_P\Vert x^{(n)}-y^{(n)}\Vert _{\mathcal {H}}\) for all \(t\in [0,T]\) and \(x,y\in \mathcal {H}\). Recalling (4.10) and (4.19), we find

(6.17)

From Itô’s formula, (4.10) and Lemma 4.6 one finds

$$\begin{aligned} \mathbb {E}\bigg \{e^{-\int ^{\tau ^x_R}_t{\frac{1}{\varepsilon }\nu (s)}ds}\,&\Theta ^{(n)}\big (\tau ^x_R,X^{(\alpha )t,x;n}_{\tau ^x_R}\big )\bigg \}\\ \le&L_f\big \Vert x^{(n)}-y^{(n)}\big \Vert +\mathbb {E}\bigg \{e^{-\int ^{\tau ^x_R\wedge \tau ^y_R}_t{\frac{1}{\varepsilon } \nu (s)}ds}\, \Theta ^{(n)}\big (\tau ^x_R\wedge \tau ^y_R,X^{(\alpha )t,x;n}_{\tau ^x_R\wedge \tau ^y_R}\big )\bigg \}\nonumber \\&-\mathbb {E}\bigg \{\int ^{\tau ^x_R}_{\tau ^x_R\wedge \tau ^y_R}{e^{-\int ^s_t{\frac{1}{\varepsilon }\nu (u)du}} \frac{1}{\varepsilon }\nu (s)\Theta ^{(n)}\big (s,X^{(\alpha )t,x;n}_s\big )ds}\bigg \}\nonumber \end{aligned}$$
(6.18)

and similarly,

$$\begin{aligned} \mathbb {E}\bigg \{e^{-\int ^{\tau ^y_R}_t{\frac{1}{\varepsilon }\nu '(s)}ds}\,&\Theta ^{(n)}\big (\tau ^y_R,X^{(\alpha )t,y;n}_{\tau ^y_R}\big )\bigg \}\\ \ge&-L_f\big \Vert x^{(n)}-y^{(n)}\big \Vert +\mathbb {E}\bigg \{e^{-\int ^{\tau ^x_R\wedge \tau ^y_R}_t{\frac{1}{\varepsilon } \nu '(s)}ds} \,\Theta ^{(n)}\big (\tau ^x_R\wedge \tau ^y_R,X^{(\alpha )t,y;n}_{\tau ^x_R\wedge \tau ^y_R}\big )\bigg \}\nonumber \\&-\mathbb {E}\bigg \{\int ^{\tau ^y_R}_{\tau ^x_R\wedge \tau ^y_R}{e^{-\int ^s_t{\frac{1}{\varepsilon }\nu '(u)du}} \frac{1}{\varepsilon }\nu '(s)\Theta ^{(n)}\big (s,X^{(\alpha )t,y;n}_s\big )ds}\bigg \}.\nonumber \end{aligned}$$
(6.19)

Take now

$$\begin{aligned} \nu '(s)=\nu (s) \text { for } s\in (t,\tau ^x_R\wedge \tau ^y_R]\, \text { and }\, \nu '(s)=0 \text { for } s>\tau ^x_R\wedge \tau ^y_R, \end{aligned}$$
(6.20)

then from (6.17), (6.18), (6.19), (6.20) and recalling (2.12) and Lemma 2.9 we obtain

$$\begin{aligned} u^R_\varepsilon (t,x^{(n)})&-u^R_\varepsilon (t,y^{(n)}) \nonumber \\&\le \big (2L_f+L_\Theta \big )\big \Vert x^{(n)}-y^{(n)}\big \Vert _{\mathcal {H}}\nonumber \\&\quad +\mathbb {E}\left\{ \Big |\Theta ^{(n)}\big (\tau ^x_R\wedge \tau ^y_R,X^{(\alpha )t,x;n}_{\tau ^x_R\wedge \tau ^x_R}\big )- \Theta ^{(n)}\big (\tau ^y_R\wedge \tau ^x_R,X^{(\alpha )t,y;n}_{\tau ^y_R\wedge \tau ^x_R}\big )\Big |\right\} \\&\quad + \sup _\nu \mathbb {E}\bigg \{\int ^{\tau ^x_R}_{\tau ^x_R\wedge \tau ^y_R} e^{-\int ^s_t{\frac{1}{\varepsilon }\nu (u)du}}\frac{1}{\varepsilon }\nu (s)\big (\Theta ^{(n)}\big (s,X^{(\alpha )t,x;n}_s\big )\nonumber \\&\quad -\Theta ^{(n)}\big (s,X^{(\alpha )t,y;n}_s\big )\big )ds \bigg \}\nonumber \\ \le&\big (2L_f+L_\Theta +2L_\Theta C_{1,T}\big )\big \Vert x^{(n)}-y^{(n)}\big \Vert _{\mathcal {H}}.\nonumber \end{aligned}$$
(6.21)

One can argue in a similar way to bound \(u^R_\varepsilon (t,y^{(n)})-u^R_\varepsilon (t,x^{(n)})\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiarolla, M.B., De Angelis, T. Optimal Stopping of a Hilbert Space Valued Diffusion: An Infinite Dimensional Variational Inequality. Appl Math Optim 73, 271–312 (2016). https://doi.org/10.1007/s00245-015-9302-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-015-9302-8

Keywords

Mathematics Subject Classification

Navigation