Skip to main content
Log in

Current Status of Antifouling Biocides Contamination in the Seto Inland Sea, Japan

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

A monitoring survey of antifouling biocides was conducted in the Harima Nada Sea and Osaka Bay of the Seto Inland Sea, Japan to assess contamination by organotin (OT) compounds and alternative biocides. The concentrations of tributyltin (TBT) compounds in surface water ranged from 1.0 to 2.8 ng/L, and the detected TBT concentrations in the bottom water layer were higher than those in the surface water. The concentrations of TBT compounds in sediment samples ranged from 2.0 to 28 ng/g dry weight (dw), respectively. The concentrations of alternative biocides in the water and sediment were lower than those before the banning of TBT by the International Maritime Organization (IMO). Although triphenyltin (TPT) compounds were not detected in water samples, TPT compounds were detected in the range of < 0.1–2700 ng/g dw in sediment samples. Their concentrations in the water samples were as follows: diuron, < 1–53 ng/L; Sea-Nine 211, < 1–1.8 ng/L; Irgarol 1051, < 1–4.0 ng/L; dichlofluanid, < 1–343 ng/L; and chlorothalonil, < 1–1 ng/L, and the ranges of these alternative compounds in sediment samples were diuron, 32–488 ng/g dw; Sea-Nine 211, 47–591 ng/g dw; Irgarol, 33–128 ng/g dw; dichlofluanid, 67–8038 ng/g dw; and chlorothalonil, 31–2975 ng/g dw. Thus, the OTs and alternative biocides have still been detected in water and sediment samples from closed sea areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asaoka S, Umehara A, Haga Y, Matsumura C, Yoshiki R, Takeda K (2019) Persistent organic pollutants are still present in surface marine sediments from the Seto Inland Sea, Japan. Mar Pollut Bull 149:110543

    Article  CAS  Google Scholar 

  • Balakrishnam S, Takeda K, Sakugawa H (2012) Occurrence of diuron and irgarol in seawater, sediment and planktons of Seto Inland Sea, Japan. Geochem J 46:169–177

    Article  Google Scholar 

  • Bandara KRV, Chinthaka SDM, Yasawardene SG, Manage PM (2021) Modified, optimized method of determination of tributyltin (TBT) contamination in coastal water, sediment and biota in Sri Lanka. Mar Pollut Bull 166:112202

    Article  CAS  Google Scholar 

  • Bao VWW, Leung KMY, Qiu J-W, Lam MHW (2011) Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolian marine species. Mar Pollut Bull 62:1147–1151

    Article  CAS  Google Scholar 

  • Batista-Andrade JA, Caldas SS, Arias JL, Castra IB, Fillmann G, Primel EG (2016) Antifluling booster biocides in coastal waters of Panama: first appraisal in one of the busiest shipping zones. Mar Pollut Bull 112:415–419

    Article  CAS  Google Scholar 

  • Batista-Andrade JA, Caldas SS, Batista RM, Castra IB, Fillmann G, Primel EG (2018) From TBT to booster biocides levels and impacts of antifouling along coastal areas of Panama. Environ Pollut 234:243–252

    Article  CAS  Google Scholar 

  • Bellas J (2006) Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci Total Environ 367:573–585

    Article  CAS  Google Scholar 

  • Bryan GW, Gibbs PE (1991) Impact of low concentrations of tributyltin (TBT) on marine organisms: review. In: Newman MC, McIntosh AW (eds) Metal ecotoxicology: concepts and applications. Lewis Publishers, Ann Arbor, pp 323–361

    Google Scholar 

  • Cavalheiro J, Sola C, Baldanza J, Tessier E, Lestremau F, Botta F, Preud’homme H, Monperrus M, Amouroux D (2016) Assessment of background concentrations of organometallic compounds (methylmercury, ethyllead and butyl- and phenyltin) in French aquatic environments. Water Res 94:32–41

    Article  CAS  Google Scholar 

  • Chen Z, Chen L, Chen C, Huang Q, Wu L, Zhang W (2017) Organotin contamination in sediments and aquatic organisms from the Yangtze estuary and adjacent marine environments. Environ Eng Sci 34:227–235

    Article  CAS  Google Scholar 

  • Clark EA, Sterritt RM, Lester JN (1988) The fate of tributyltin in the aquatic environment. Environ Sci Technol 22:600–604

    Article  CAS  Google Scholar 

  • Concha-Grana E, Moscoco-Perez C, Fernandez-Gonzalez V, Lopez-Mahia P, Gaga J, Leon VM, Muniategui-Lorenzo S (2021) Phthalates, organotin compounds and per-polyfluoroalkyl substances in semiconfined areas of the Spanish coast: occurrence, sources and risk assessment. Sci Total Environ 780:146450

    Article  CAS  Google Scholar 

  • de Mora SJ, King NG, Miller MC (1989) Tributyltin and total tin in marine sediment profiles and the apparent rate of TBT degradation. Environ Technol Lett 10:901–908

    Article  Google Scholar 

  • de Vries H, Penninkis AH, Snoeij NJ, Seinen W (1991) Comparative toxicity of organotin compounds to rainbou trout (Oncorhynchus mykiss) yolk sac fry. Sci Total Environ 103:229–243

    Article  Google Scholar 

  • Deng L, Liu C-H, Zheang H-M, Xu H-L (2015) Levels and assessment of organotin contamination at Futian mangrove wetland in Shenzhen, China. Reg Stud Mar Sci 1:18–24

    Google Scholar 

  • Diez S, Abalos M, Bayona JM (2002) Organotin contamination in sediments from the Western Mediterranean enclosures following 10 years of TBT regulation. Water Res 36:905–918

    Article  CAS  Google Scholar 

  • Dowson PH, Bubb JM, Williams TP, Lester JN (1993) Degradation of tributyltin in sediment in freshwater and estuarine marina sediments. Wat Sci Technol 28:133–137

    Article  CAS  Google Scholar 

  • Egard J, Nilsson P, Dahllof I (2017) Sediments indicate the continued use of banned antifoling compounds. Mar Pollut Bull 282–288

  • Fernandez-Alba AR, Hernando MD, Piedra L, Chisti Y (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal Chem Acta 456:303–312

    Article  CAS  Google Scholar 

  • Filipkowska A, Kowalewska G, Pavoni B, Leczyiiski L (2011) Organotin compounds in surface sediments from seaports on the Gulf of Gdansk (southern Baltic coast). Environ Monit Assess 182:455–466

    Article  CAS  Google Scholar 

  • Gao J-M, Wu L, Chen Y-P, Zhou B, Guo J-S, Zhang K, Ouyang W-J (2017) Spatiotemporal distribution and risk assessment of organotins in the surface water of the three gorges reservoir region, China. Chemosphere 171:405–414

    Article  CAS  Google Scholar 

  • Gatidou G, Thomaidis NS (2007) Evaluation of single and joint toxic effects of two antifoling biocides, their main metabolites and copper using phytoplankton bioassays. Aquat Toxicol 85:184–191

    Article  CAS  Google Scholar 

  • Goto A, Tue NM, Someya M, Isobe T, Takahashi S, Tanabe S, Kunisue T (2017) Occurrence of natural mixed halogenated dibenzo-p-dioxins: specific distribution and profiles in mussels from Seto Inland Sea, Japan. Environ Sci Technol 51(20):11771–11779

    Article  CAS  Google Scholar 

  • Hall LW Jr, Bushong SJ, Ziegenfuss MC, Johnson W, Wright HR, DA, (1988) Chronic toxicity of tributyltin to Chesapeake Bay biota. Water Air Soil Pollut 39:365–376

    Article  CAS  Google Scholar 

  • Hall LW Jr, Giddings JM, Solomon KR, Balcomb R (1999) An ecological risk assessment for use of irgarol 1051 as an algaecide for antifoulant paints. Crit Rev Toxicol 29:367–437

    CAS  Google Scholar 

  • Harino H (2016) Emerging issues on contamination and adverse effects aby alternative antifouling paints in the marine environments. In: Horiguchi T (ed) Biological effects by organotin. Springer, pp 43–70

    Google Scholar 

  • Harino H, Yamato S (2021) Distribution of antifouling biocides in a coastal area of Tanabe Bay, Japan. J Mar Biol Assoc UK 101:49–59

    Article  CAS  Google Scholar 

  • Harino H, Fukushima M, Yamamoto Y, Kawai S, Miyazaki N (1998) Organotin compounds in water, sediment, and biological samples from the Port of Osaka, Japan. Arch Environ Contam Toxicol 35:558–564

    Article  CAS  Google Scholar 

  • Harino H, Fukushima M, Kawai S (2000) Accumulation of butyltin and phenyltin compounds in fish species. Arch Environ Contam Toxicol 39:13–19

    Article  CAS  Google Scholar 

  • Harino H, Mori Y, Yamaguchi Y, Shibata K, Senda T (2005) Monitoring of antifouling booster biocides in water and sediment from the Port of Osaka, Japan. Arch Environ Contam Toxicol 48:303–310

    Article  CAS  Google Scholar 

  • Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N (2009) Contamination profiles of antifouling biocides in selected coastal regions of Malaysia. Arch Environ Contam Toxicol 56:468–478

    Article  CAS  Google Scholar 

  • Ho KKY, Zhou G-J, Xu EGB, Wang X, Leung KMY (2016) Long-term spatio-temporal trends of organotin contaminations in the marine environment of Hong Kong. PLoS ONE 11(5):e155632

    Article  Google Scholar 

  • Horiguchi T, Shiraishi H, Shimizu M, Yamazaki S, Morita M (1995) Imposex in Japanese gastropods (neogastropoda and mesogastropoda): effects of tributyltin and triphenyltin from antifouling paints. Mar Pollut Bull 31:402–405

    Article  CAS  Google Scholar 

  • Kaonga CC, Takeda K, Sakugawa H (2016) Concentration and degradation of alternative biocides and an insecticide in surface waters and their major sinks in a semi-enclose sea, Japan. Chemosphere 145:256–264

    Article  CAS  Google Scholar 

  • Lapoda D, Rosenberger DE, Platter Rieger MF, Seligman PF (1993) Growth and survival of Mytilus edulis larvae exposed to low levels of dibutyltin and tributyltin. Mar Pollut Bull 115:413–419

    Google Scholar 

  • Laughlin RB, Linden O Jr (1985) Fate and effects of organotin compounds. Ambio 14:88–94

    CAS  Google Scholar 

  • Lawler IF, Aldrich JC (1987) Sublethal effects of bis(tri-n-butyltin oxicide on Crassostrea gigas spat. Mar Pollut Bull 18:274–278

    Article  CAS  Google Scholar 

  • Liu L-L, Wang J-T, Chung K-N, Leu M-Y, Meng P-J (2011) Distribution and accumulation of organotin species in seawater, sediments and organisms collected from a Taiwan mariculture area. Mar Pollut Bull 63:535–540

    Article  CAS  Google Scholar 

  • Mebeker AV, Schuyteme GS (1998) Chronic effects of the herbicide diuron on freshwater cladocerans, amphipods, midges, Minnows, worms and snails. Arch Environ Toxicol 35:441–446

    Article  Google Scholar 

  • Midorikawa S, Arai T, Harino H, Ohji M, Cu ND, Miyazakia N (2004) Concentrations of organotin compounds in sediment and clams collected from coastal areas in Vietnam. Environ Pollut 131:401–408

    Article  CAS  Google Scholar 

  • Ministry of the environment http://www.env.go.jp/water/heisa/heisa_net/setouchiNet/seto/kankyojoho/sizenkankyo/suisituodaku.htm. Accessed 7 Nov 2021 (in Japanese)

  • Mochida K, Amamo H, Onduka T, Kakuno A, Fujii K (2010) Toxicity of 4,5-dichloro-2-octyl-3(2H)-isothiazolone (Sea-Nine 211) to two marine teleostean fishes. Jpn Environ Toxicol 13(2):105–116

    Google Scholar 

  • Mochida K, Onduka T, Amano H, Ito M, Ito K, Tanaka H, Fujii K (2012) Use of species sensitivity distributions to predict no-effect concentrations of an antifouling biocide, pyridine triphenylborane, for marine organisms. Mar Pollut Bull 64:2807–2814

    Article  CAS  Google Scholar 

  • Mochida K, Hano T, Onduka T, Ichihashi H, Amano H, Ito M, Ito K, Tanaka H, Fujii K (2015) Spatial analysis of 4,5-dichloro-w-n-octyl-4-isothiazolin-3-one (SeaNine211) concentrations and probabilistic risk to marine organisms in Hiroshima Bay, Japan. Environ Pollut 204:233–240

    Article  CAS  Google Scholar 

  • Mochida K, Hano T, Onduka T, Ito K, Yoshida G (2019) Physiological responses of eelgrass (Zostera marina) to ambient stresses such as herbicide, insufficient light, and high water temperature. Aquat Toxicol 208:20–28

    Article  CAS  Google Scholar 

  • Myers JH, Gunthorpe L, Allinson G, Duda S (2006) Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Desicaine. Mar Pollut Bull 52:1048–1055

    Article  CAS  Google Scholar 

  • Ohji M, Arai T, Miyazaki N (2002) Effects of tributyltin exposure in the embryonic stage on sex ratio and survival rate in the caprellid amphipod Caprella danilevskii. Mar Ecol Prog Ser 235:171–176

    Article  CAS  Google Scholar 

  • Ohji M, Arai T, Miyazaki N (2003) Chronic effects of tributyltin on the caprellid amphipod Caprella danilevskii. Mar Pollut Bull 46:1263–1272

    Article  CAS  Google Scholar 

  • Okamura H, Aoyama I, Takami T, Maruyama T, Suzuki Y, Matsumoto M, Katsuyama I, Hamada J, Beppu T, Tanaka O, Maguire RJ, Liu D, Lau L, Pacepavicius J (2000) Phytotoxicity of the new antifouling compound irgarol 1051 and a major degradation product. Mar Pollut Bull 40:754–763

    Article  CAS  Google Scholar 

  • Okamura H, Watanabe T, Aoyama I, Hasobe M (2002) Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46:945–951

    Article  CAS  Google Scholar 

  • Onduka T, Ojima D, Ito M, Mochida K, Fujii K (2013) Toxiciy of the antifouling biocide Sea-Nine 211 to marine algae crustacean, and a polychaete. Fish Sci 79:999–1006

    Article  CAS  Google Scholar 

  • Onduka T, Mizuno K, Shikata T, Matubara T, Onitsuka G, Hamaguchi M (2022) Assessment of the risk posed by three antifouling biocides to Pacific oyster embryos and larvae in Hiroshima Bay, Japan. Environ Sci Pollut Res 29:9011–9022

    Article  CAS  Google Scholar 

  • Onduka T, Kakuno A, Kono K, Ito K, Mochida K, Fujii K (2012) Toxicity of chlorothalonil to marine organisms. Fish Sci 78:1301–1308

    Article  CAS  Google Scholar 

  • Saleh A, Molaei S, Fumani NS, Abedi E (2016) Antifouling paint booster biocides (Irgarol 1051 and diuron) in marinas and ports of Bushehr, Persian Gulf. Mar Pollut Bull 105:367–372

    Article  CAS  Google Scholar 

  • Shade WD, Hurt SS, Jacobson AH, Reinert KH (1994) Ecological risk assessment of a novel marine antifoulant. Environ Toxicol Risk Assess 1216:381–408

    Google Scholar 

  • Thistle H, Durkin PR (2015) chlorothalonil: Worksheenmaker workbook documentation final report. SERA TR-056-13-01-02b 16-17

  • Toth S, Slooten KB, Spack L, de Alencastro LF, Tarradellas J (1996) Irgarol 1051, an antifouling compound in freshwater, sediment, and biota of Lake Geneva. Bull Environ Contam Toxicol 57:426–433

    Article  CAS  Google Scholar 

  • Turk MF, Ivanic N, Daurovic J, Bacic N, Mikac N (2020) Simultaneous analysis of butyltins and total tin in sediments as a tool for the assessment of tributyltin behavior, long-term persistence and historical contamination in the coastal environment. Chemosphere 258:127307

    Article  Google Scholar 

  • UK (2016) Regulation (EU) No528/2012 concerning the making available on the market and use of biocidal products evaluation of active substances assessment report dichlofluanid. pp50

Download references

Funding

This research was conducted with research funding in the Faculty of Human Sciences, Kobe University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The sample collection was performed by MO, KK, TO, TH and KM. Data analysis was performed by HH. The first draft of the manuscript was written by HH and all authors commented on the manuscript.

Corresponding author

Correspondence to Hiroya Harino.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harino, H., Ohji, M., Kono, K. et al. Current Status of Antifouling Biocides Contamination in the Seto Inland Sea, Japan. Arch Environ Contam Toxicol 85, 333–348 (2023). https://doi.org/10.1007/s00244-023-01036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-023-01036-8

Navigation