Skip to main content
Log in

Identifying Behavioral Response Profiles of Two Common Larval Fish Models to a Salinity Gradient

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Salinization of aquatic systems is an emerging global issue projected to increase in magnitude, frequency, and duration with climate change and landscape modifications. To consider influences of salinity on locomotor activity of common fish models, we examined behavioral response profiles of two species, zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), across a gradient of sodium chloride. Following each experiment, behavior was recorded with automated tracking software and then behavioral response variables, including locomotor (e.g., distance traveled, number of movements, duration of movements) and photolocomotor changes, were examined at several speed thresholds (bursting, cruising, freezing) to identify potential salinity responses. Zebrafish responses were significantly (p < 0.05) reduced at the highest treatment level (5.78 g/L) for multiple behavioral endpoints during both dark and light phases; however, fathead minnow responses were more variable and not consistently concentration dependent. Future efforts are needed to understand behavioral response profiles in combination with anthropogenic contaminants and natural toxins across the freshwater to marine continuum, considering salinization of inland waters, sea level rise, and transport of anthropogenic contaminants and algal toxins from inland waters to coastal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ågerstrand M, Arnold K, Balshine S, Brodin T, Brooks BW, Maack G, McCallum ES, Pyle G, Saaristo M, Ford AT (2020) Use of behavioural endpoints in regulation of chemicals. Environ Sci Process Impacts 22:49–65

    Article  Google Scholar 

  • American Public Health Association (APHA), American Water Works Association, Water Environment Foundation (1998) Standard Methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

    Google Scholar 

  • Beamish FWH (1978) Swimming capacity. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 7. Academic Press, pp 101–187

    Google Scholar 

  • Beatty SJ, Morgan DL, Rashnavadi M, Lymbery AJ (2011) Salinity tolerances of endemic freshwater fishes of South-Western Australia: implications for conservation in a biodiversity hotspot. Mar Freshwater Res 62:91–100. https://doi.org/10.1071/MF10100

    Article  CAS  Google Scholar 

  • Brooks BW, Grover JP, Roelke DL (2011) Prymnesium parvum, An emerging threat to inland waters. Environ Toxicol Chem 30:1955–1964

    Article  CAS  Google Scholar 

  • Brooks BW, Lazorchak JM, Howard MDA, Johnson MV, Morton SL, Perkins DAK, Reavie ED, Scott GI, Smith SA, Steevens JA (2016) Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicol Chem 35:6–13

    Article  CAS  Google Scholar 

  • Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz CJ (2013) salinisation of rivers: an urgent ecological issue. Environ Pollut 173:157–167. https://doi.org/10.1016/j.envpol.2012.10.011

    Article  CAS  Google Scholar 

  • Cañedo-Argüelles Iglesias M (2020) A review of recent advances and future challenges in freshwater salinization. Limnetica 39:185–211. https://doi.org/10.23818/limn.39.13

    Article  Google Scholar 

  • Cheeseman J (2016) Food security in the face of salinity, drought, climate change, and population growth. In: Khan MA, Ozturk M, Gul B, Ahmed MZ (eds) Halophytes for food security in dry lands. Elsevier, Amsterdam, pp 111–123. https://doi.org/10.1016/B978-0-12-801854-5.00007-8

    Chapter  Google Scholar 

  • Cooper CA, Mayer PM, Faulkner BR (2014) Effects of road salts on groundwater and surface water dynamics of sodium and chloride in an urban restored stream. Biogeochemistry 121(1):149–166. https://doi.org/10.1007/s10533-014-9968-z

    Article  CAS  Google Scholar 

  • Craig PM, Wood CM, McClelland GB (2010) Water chemistry alters gene expression and physiological endpoints of chronic waterborne copper exposure in zebrafish, Danio rerio. Environ Sci Technol 44(6):2156–2162. https://doi.org/10.1021/es902995q

    Article  CAS  Google Scholar 

  • Cutler CP (2011) Water balance and aquaporin. In: Farrell AP, Stevens ED, Cech JJ, Richards JG (eds) Encyclopedia of fish physiology: from genome to environment, vol 2. Academic Press, pp 1359–1365

    Google Scholar 

  • Diamond J, Bowersox M, Latimer H, Barbour C, Bearr J, Butcher J (2005) Effects of pulsed contaminant exposures on early life stages of the fathead minnow. Arch Environ Contam Toxicol 49(4):511–519. https://doi.org/10.1007/s00244-005-7023-8

    Article  CAS  Google Scholar 

  • Dolezelova P, Macova S, Plhalova L, Pistekova V, Svobodova Z, Bedanova I, Voslarova E (2009) Comparison of the sensitivity of different fish species to medical substances. Neuro Endocrinol Lett 30(Suppl 1):248–252

    CAS  Google Scholar 

  • Elphick JRF, Bergh KD, Bailey HC (2011) Chronic toxicity of chloride to freshwater species: effects of hardness and implications for water quality guidelines. Environ Toxicol Chem 30:239–246. https://doi.org/10.1002/etc.365

    Article  CAS  Google Scholar 

  • Evans DH (2011) Osmoregulation in fishes: an introduction. In: Farrell AP, Stevens ED, Cech JJ, Richards JG (eds) Encyclopedia of fish physiology: from genome to environment (vol 2). Academic Press, Cambridge, pp 1359–1365

    Google Scholar 

  • Evans TG, Kültz D (2020) The cellular stress response in fish exposed to salinity fluctuations. J Exp Zool Part a: Ecol Integr Physiol 333(6):421–435. https://doi.org/10.1002/jez.2350

    Article  Google Scholar 

  • Farhana T, Haque F, Amin FB et al (2019) Developmental pliability in zebrafish: an experimental enquiry of acute salinity stress on the early life of zebrafish. Aquacult Rep 14:100189. https://doi.org/10.1016/j.aqrep.2019.100189

    Article  Google Scholar 

  • Ford AT, Ågerstrand M, Brooks BW, Allen HJ, Bertram MG, Brodin T, Dang ZC, Duquesne S, Sahm R, Hoffmann F, Hollert H, Jacob S, Klüver N, Lazorchak JM, Ledesma M, Melvin SD, Mohr S, Padilla S, Pyle GC, Scholz S, Saaristo M, Smit E, Steevens JA, van den Berg S, Kloas W, Wong BBM, Ziegler M, Maack G (2021) The role of behavioral ecotoxicology in environmental protection. Environ Sci Technol 55:5620–5628

    Article  CAS  Google Scholar 

  • Freiry R, Stelzer JAA, Maltchik L, Arenzon A (2014) Sensitivity of Danio rerio (Teleostei, Cyprinidae) during two stages of development based on acute toxicity tests. Bull Environ Contam Toxicol 93(4):442–445. https://doi.org/10.1007/s00128-014-1367-6

    Article  CAS  Google Scholar 

  • Geis SW, Fleming K, Mager A, Reynolds L (2003) Modifications to the fathead minnow (Pimephales promelas) chronic test method to remove mortality due to pathogenic organisms. Environ Toxicol Chem 22(10):2400–2404. https://doi.org/10.1897/02-375

    Article  CAS  Google Scholar 

  • Gerhardt A (2007) Aquatic behavioral ecotoxicology—prospects and limitations. Hum Ecol Risk Assess 13(3):481–491. https://doi.org/10.1080/10807030701340839

    Article  Google Scholar 

  • Haigis A-C, Ottermanns R, Schiwy A, Hollert H, Legradi J (2022) Getting more out of the zebrafish light dark transition test. Chemosphere 295:133863. https://doi.org/10.1016/j.chemosphere.2022.133863

    Article  CAS  Google Scholar 

  • Hale SE, Škulcová L, Pípal M et al (2019) Monitoring wastewater discharge from the oil and gas industry using passive sampling and Danio rerio bioassay as complimentary tools. Chemosphere 216:404–412. https://doi.org/10.1016/j.chemosphere.2018.10.162

    Article  CAS  Google Scholar 

  • Hintz WD, Relyea RA (2017) A salty landscape of fear: responses of fish and zooplankton to freshwater salinization and predatory stress. Oecologia 185(1):147–156. https://doi.org/10.1007/s00442-017-3925-1

    Article  Google Scholar 

  • Hoover Z, Ferrari MCO, Chivers DP (2013a) The effects of sub-lethal salinity concentrations on the anti-predator responses of fathead minnows. Chemosphere 90(3):1047–1052. https://doi.org/10.1016/j.chemosphere.2012.08.051

    Article  CAS  Google Scholar 

  • Hoover Z, Weisgerber JN, Pollock MS, Chivers DP, Ferrari MCO (2013b) Sub-lethal increases in salinity affect reproduction in fathead minnows. Sci Total Environ 463–464:334–339. https://doi.org/10.1016/j.scitotenv.2013.06.046

    Article  CAS  Google Scholar 

  • Hwang PP (2011) Mechanisms of Ion transport in freshwater fishes. In: Farrell AP, Stevens ED, Cech JJ, Richards JG (eds) Encyclopedia of fish physiology: from genome to environment (vol 2). Academic Press, Cambridge, pp 1359–1365

    Chapter  Google Scholar 

  • Ingebretson J, Masino M (2013) Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies. Front Neural Circuits. https://doi.org/10.3389/fncir.2013.00109

    Article  Google Scholar 

  • James KR, Cant B, Ryan T (2003) Responses of freshwater biota to rising salinity levels and implications for saline water management: a review. Aust J Bot 51:703. https://doi.org/10.1071/BT02110

    Article  CAS  Google Scholar 

  • Khan AE, Ireson A, Kovats S, Mojumder SK, Khusru A, Rahman A, Vineis P (2011) Drinking water salinity and maternal health in coastal bangladesh: implications of climate change. Environ Health Perspect 119(9):1328–1332. https://doi.org/10.1289/ehp.1002804

    Article  CAS  Google Scholar 

  • Kokel D, Peterson RT (2011) Chapter 22—using the zebrafish photomotor response for psychotropic drug screening. In: Detrich HW, Westerfield M, Zon LI (eds) Methods in cell biology. Academic Press, Cambridge, pp 517–524

    Chapter  Google Scholar 

  • Kokel D, Bryan J, Laggner C, White R, Cheung CYJ, Mateus R, Healey D, Kim S, Werdich AA, Haggarty SJ, MacRae CA, Shoichet B, Peterson RT (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6(3):231–237. https://doi.org/10.1038/nchembio.307

    Article  CAS  Google Scholar 

  • Kristofco LA, Cruz LC, Haddad SP, Behra ML, Chambliss CK, Brooks BW (2016) Age matters: Developmental stage of Danio rerio larvae influences photomotor response thresholds to diazinion or diphenhydramine. Aquat Toxicol 170:344–354. https://doi.org/10.1016/j.aquatox.2015.09.011

    Article  CAS  Google Scholar 

  • Kszos LA, Talmage SS, Morris GW, Konetsky BK, Rottero T (2003) Derivation of aquatic screening benchmarks for 1,2-dibromoethane. Arch Environ Contam Toxicol 45(1):0066–0071. https://doi.org/10.1007/s00244-002-0151-5

    Article  CAS  Google Scholar 

  • Kultz D (2015) Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218:1907–1914. https://doi.org/10.1242/jeb.118695

    Article  Google Scholar 

  • Lange M, Gebauer W, Markl J, Nagel R (1995) Comparison of testing acute toxicity on embryo of zebrafish, Brachydanio rerio and RTG-2 cytotoxicity as possible alternatives to the acute fish test. Chemosphere 30(11):2087–2102. https://doi.org/10.1016/0045-6535(95)00088-P

    Article  CAS  Google Scholar 

  • Lee HB, Schwab TL, Sigafoos AN, Gauerke JL, Krug RG II, Serres MR, Jacobs DC, Cotter RP, Das B, Petersen MO, Daby CL, Urban RM, Berry BC, Clark KJ (2019) Novel zebrafish behavioral assay to identify modifiers of the rapid, nongenomic stress response. Genes Brain Behav. https://doi.org/10.1111/gbb.12549

    Article  Google Scholar 

  • Little EE, Finger SE (1990) Swimming behavior as an indicator of sublethal toxicity in fish. Environ Toxicol Chem 9(1):13–19. https://doi.org/10.1002/etc.5620090103

    Article  CAS  Google Scholar 

  • Lovin LM, Kim S, Taylor RB, Scarlett KR, Langan LM, Chambliss CK, Chatterjee S, Scott JT, Brooks BW (2021) Differential influences of (±) anatoxin-a on photolocomotor behavior and gene transcription in larval zebrafish and fathead minnows. Environ Sci Eur 33(1):40. https://doi.org/10.1186/s12302-021-00479-x

    Article  CAS  Google Scholar 

  • Melvin SD, Wilson SP (2013) The utility of behavioral studies for aquatic toxicology testing: a meta-analysis. Chemosphere 93:2217–2223. https://doi.org/10.1016/j.chemosphere.2013.07.036

    Article  CAS  Google Scholar 

  • Meyer JS, Sanchez DA, Brookman JA, McWhorter DB, Bergman HL (1985) Chemistry and aquatic toxicity of raw oil shale leachates from Piceance basin, Colorado. Environ Toxicol Chem 4:559–572. https://doi.org/10.1002/etc.5620040416

    Article  CAS  Google Scholar 

  • Mount DR, Gulley DD, Hockett JR, Garrison TD, Evans JM (1997) Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows). Environ Toxicol Chem 16(10):2009–2019. https://doi.org/10.1002/etc.5620161005

    Article  CAS  Google Scholar 

  • OECD (2013) Test no. 236: fish embryo acute toxicity (FET) test. OECD Guidelines for Testing of Chemicals Section 2: effects on biotic systems. OECD Publishing, Paris

    Google Scholar 

  • Padilla S, Hunter DL, Padnos B, Frady S, MacPhail RC (2011) Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotoxicol Teratolo 33(6):624–630. https://doi.org/10.1016/j.ntt.2011.08.005

    Article  CAS  Google Scholar 

  • Peterson MS, Meador MR (1994) Effects of salinity on freshwater fishes in coastal plain drainages in the southeastern US. Rev Fish Sci 2(2):95–121. https://doi.org/10.1080/10641269409388554

    Article  Google Scholar 

  • Pickering QH, Lazorchak JM, Winks KL (1996) Subchronic sensitivity of one-, four-, and seven-day-old fathead minnow (Pimephales promelas) larvae to five toxicants. Environ Toxicol Chem 15(3):353–359. https://doi.org/10.1002/etc.5620150320

    Article  CAS  Google Scholar 

  • Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351. https://doi.org/10.1126/science.1183090

    Article  CAS  Google Scholar 

  • Schuler MS, Cañedo-Argüelles M, Hintz WD, Dyack B, Birk S, Relyea RA (2019) Regulations are needed to protect freshwater ecosystems from salinization. Philos Trans R Soc B Biol Sci 374(1764):20180019. https://doi.org/10.1098/rstb.2018.0019

    Article  CAS  Google Scholar 

  • Searle CL, Shaw CL, Hunsberger KK, Prado M, Duffy MA (2016) Salinization decreases population densities of the freshwater crustacean, Daphnia dentifera. Hydrobiologia 770(1):165–172. https://doi.org/10.1007/s10750-015-2579-4

    Article  CAS  Google Scholar 

  • Squires AJ, Dubé MG, Rozon-Ramilo LD (2013) Assessing the sublethal effects of in-river concentrations of parameters contributing to cumulative effects in the athabasca river basin using a fathead minnow bioassay. Environ Toxicol Chem 32(3):662–672. https://doi.org/10.1002/etc.2081

    Article  CAS  Google Scholar 

  • Stark J (1999) Bioassay report chronic toxicity tests. SF Analytical Laboratories Inc, Milwaukee

    Google Scholar 

  • Steele WB, Kristofco LA, Corrales J, Saari GN, Haddad SP, Gallagher EP, Kavanagh TJ, Kostal J, Zimmerman JB, Voutchkova-Kostal A, Anastas P, Brooks BW (2018a) Comparative behavioral toxicology with two common larval fish models: exploring relationships among modes of action and locomotor responses. Sci Total Environ 640–641:1587–1600

    Article  Google Scholar 

  • Steele WB, Mole RA, Brooks BW (2018b) Experimental Protocol for Examining Behavioral Response Profiles in Larval Fish: Application to the Neuro-stimulant Caffeine. J vis Exp 137:e57938. https://doi.org/10.3791/57938

    Article  CAS  Google Scholar 

  • Steele WB, Kristofco LA, Corrales J, Saari GN, Corcoran EJ, Hill BN, Mills MG, Gallagher E, Kavanagh TJ, Melnikov F, Zimmerman JB, Voutchkova-Kostal A, Anastas PT, Kostal J, Brooks BW (2020) Toward less hazardous industrial compounds: coupling quantum mechanical computations, biomarker responses, and behavioral profiles to identify bioactivity of SN 2 electrophiles in alternative vertebrate models. Chem Res Toxicol 33(2):367–380. https://doi.org/10.1021/acs.chemrestox.9b00290

    Article  CAS  Google Scholar 

  • Suter GW II (2007) Ecological risk assessment, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Tauhid Ur Rahman M, Rasheduzzaman Md, Habib MA, Ahmed A, Tareq SM, Muniruzzaman SM (2017) Assessment of fresh water security in coastal Bangladesh: an insight from salinity, community perception and adaptation. Ocean Coast Manag 137:68–81. https://doi.org/10.1016/j.ocecoaman.2016.12.005

    Article  Google Scholar 

  • Taylor PA, Stewart AJ, Holt L (1988) Toxicity of common salts to three biotoxicity test organisms. Prepared for presentation at American Institute of Chemical Engineers National Meeting

  • Thomas DG, Shankaran H, Truong L, Tanguay RL, Waters KM (2019) Time-dependent behavioral data from zebrafish reveals novel signatures of chemical toxicity using point of departure analysis. Comput Toxicol 9:50–60. https://doi.org/10.1016/j.comtox.2018.11.001

    Article  Google Scholar 

  • US EPA (1991) Methods for aquatic toxicity identification evaluation Phase I: toxicity confirmation procedures for samples exhibiting acute and chronic toxicity. United States Environmental Protection Agency, Office of Research and Development, Washington, DC

  • US EPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th edn. United States Environmental Protection Agency, Office of Research and Development, Washington, DC

  • Valenti TW, Cherry DS, Neves RJ, Locke BA, Schmerfeld JJ (2007) Case study: sensitivity of mussel glochidia and regulatory test organisms to mercury and a reference toxicant. Freshwater Bivalve Ecotoxicology. SETAC Press, Pensacola, pp 351–367

    Google Scholar 

  • van Woudenberg AB, Wolterbeek A, te Brake L, Snel C, Menke A, Rubingh C, de Groot D, Kroese D (2013) A category approach to predicting the developmental (Neuro) toxicity of organotin compounds: the value of the Zebrafish (Danio rerio) embryotoxicity test (ZET). Reprod Toxicol 41:35–44. https://doi.org/10.1016/j.reprotox.2013.06.067

    Article  CAS  Google Scholar 

  • Venâncio C, Ribeiro R, Lopes I (2020) Active emigration from climate change-caused seawater intrusion into freshwater habitats. Environ Pollut 258:113805. https://doi.org/10.1016/j.envpol.2019.113805

    Article  CAS  Google Scholar 

  • Vineis P, Chan Q, Khan A (2011) Climate change impacts on water salinity and health. J Epidemiol Glob Health 1(1):5–10. https://doi.org/10.1016/j.jegh.2011.09.001

    Article  Google Scholar 

  • Waller WT, Cairns J (1972) Use of fish movement patterns to monitor zinc in water. Water Res 6:257–269

    Article  CAS  Google Scholar 

  • Weis JS, Smith G, Zhou T, Santiago-Bass C, Weis P (2001) Effects of contaminants on behavior: biochemical mechanisms and ecological consequences. Bioscience 51:209–217. https://doi.org/10.1641/0006-3568(2001)051[0209:EOCOBB]2.0.CO;2

    Article  Google Scholar 

  • Whitney JE, Al-Chokhachy R, Bunnell DB, Caldwell CA, Cooke SJ, Eliason EJ, Rogers M, Lynch AJ, Paukert CP (2016) Physiological basis of climate change impacts on North American Inland fishes. Fisheries 41(7):332–345. https://doi.org/10.1080/03632415.2016.1186656

    Article  Google Scholar 

  • Wong BBM, Candolin U (2015) Behavioral responses to changing environments. Behav Ecol 26(3):665–673. https://doi.org/10.1093/beheco/aru183

    Article  Google Scholar 

Download references

Funding

Research reported in this publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under award number 1P01ES028942 to BWB. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional support was provided by the Glasscock Fund for Excellence in Environmental Science to KRS and LML, and Baylor University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan W. Brooks.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 27 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarlett, K.R., Lovin, L.M., Steele, W.B. et al. Identifying Behavioral Response Profiles of Two Common Larval Fish Models to a Salinity Gradient. Arch Environ Contam Toxicol 83, 180–192 (2022). https://doi.org/10.1007/s00244-022-00951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-022-00951-6

Navigation