Skip to main content
Log in

Chronic Exposure to Two Gestagens Differentially Alters Morphology and Gene Expression in Silurana tropicalis

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Gestagens are active ingredients in human and veterinary drugs with progestogenic activity. Two gestagens—progesterone (P4), and the synthetic P4 analogue, melengestrol acetate (MGA)—are approved for use in beef cattle agriculture in North America. Both P4 and MGA have been measured in surface water receiving runoff from animal agricultural operations. This project aimed to assess the morphometric and molecular consequences of chronic exposures to P4, MGA, and their mixture during Western clawed frog metamorphosis. Chronic exposure (from embryo to metamorphosis) to MGA (1.7 µg/L) or P4 + MGA (0.22 µg/L P4 + 1.5 µg/L MGA) caused a considerable dysregulation of metamorphic timing, as evidenced by an inhibition of growth, narrower head, and lack of forelimb emergence in all animals. Molecular analysis revealed that chronic exposure to the mixture induced an additive upregulation of neurosteroid-related (GABAA receptor subunit α6 (gabra6) and steroid 5-alpha reductase 1 (srd5α1) gene expression in brain tissue. Chronic P4 exposure (0.26 µg/L P4) induced a significant upregulation of the expression hypothalamic–pituitary–gonadal (HPG)-related genes (ipgr, erα) in the gonadal mesonephros complex (GMC). Our data suggest that exposure to P4, MGA, and their mixture induces multiple endocrine responses and adverse effects in larval Western clawed frogs. This study helps to better our understanding of the consequences of chronic gestagen exposure and suggests that the implications and risk of high gestagen use in beef cattle feeding operations may extend to the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams SM, McLean RB (1985) Estimation of largemouth bass, Micropterus salmoides Lacepede, growth using the liver somatic index and physiological variables. J Fish Biol 26(2):111–126

    Google Scholar 

  • American Society for Testing Materials (ASTM) (1998) Standard guide for conducting the frog embryo teratogenesis assay-Xenopus (FETAX). Annual Book of ASTM Standards. Philadelphia: ASTM. pp. 826–36

  • Aufrère MB, Benson H (1976) Progesterone: an overview and recent advances. J Pharmaceutical Sci 65(6):783–800

    Google Scholar 

  • Bartelt-Hunt SL, Snow DD, Kranz WL, Mader TL, Shapiro CA, Donk SJV et al (2012) Effect of growth promotants on the occurrence of endogenous and synthetic steroid hormones on feedlot soils and in runoff from beef cattle feeding operations. Environ Sci Technol 46(3):1352–1360. https://doi.org/10.1021/es202680q

    Article  CAS  Google Scholar 

  • Bauer ERS, Daxenberger A, Petri T, Sauerwein H, Meyer HHD (2001) Characterisation of the affinity of different anabolics and synthetic hormones to the human androgen receptor, human sex hormone binding globulin and to the bovine progestin receptor. Apmis 109(S103):S452–S460

    Google Scholar 

  • Baulieu EE, Schumacher M (2000) Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids 10(65):605–612

    Google Scholar 

  • Berry DL, Rose CS, Remo BF, Brown DD (1998) The expression pattern of thyroid hormone response genes in remodeling tadpole tissues defines distinct growth and resorption gene expression programs. Dev Biol 203(1):24–35

    CAS  Google Scholar 

  • Besse JP, Garric J (2009) Progestagens for human use, exposure and hazard assessment for the aquatic environment. Environ Pollut 157(12):3485–3494. https://doi.org/10.1016/j.envpol.2009.06.012

    Article  CAS  Google Scholar 

  • Biswas S, Kranz WL, Shapiro CA, Snow DD, Bartelt-Hunt SL, Mamo M et al (2017) Effect of rainfall timing and tillage on the transport of steroid hormones in runoff from manure amended row crop fields. J Hazard Mater 324:436–447

    CAS  Google Scholar 

  • Brausch JM, Wages M, Shannahan RD, Perry G, Anderson TA, Maul JD et al (2010) Surface water mitigates the anti-metamorphic effects of perchlorate in New Mexico spadefoot toads (Spea multiplicata) and African clawed frogs (Xenopus laevis). Chemosphere 78(3):280–285

    CAS  Google Scholar 

  • Brown DD, Cai L (2007) Amphibian metamorphosis. Develop Biol 306(1):20

    CAS  Google Scholar 

  • Bruzzone F, Do Rego JL, Luu-The V, Pelletier G, Vallarino M, Vaudry H (2010) Immunohistochemical localization and biological activity of 3β-hydroxysteroid dehydrogenase and 5α-reductase in the brain of the frog, Rana esculenta, during development. J Chem Neuroanatomy 39(1):35–50

    CAS  Google Scholar 

  • Bulkley RV, Swihart GL (1973) Effects of the anabolic steroid stanozolol on growth of channel catfish, Ictalurus punctatus, and goldfish, Carassius auratus. Trans Am Fish Soc 102(2):444–446

    CAS  Google Scholar 

  • Callachan H, Cottrell GA, Hather NY, Lambert JJ, Nooney JM, Peters JA (1987) Modulation of the GABAA receptor by progesterone metabolites. Proc R Soc London B Biol Sci 231(1264):359–369

    CAS  Google Scholar 

  • Camper SA, Yao YAS, Rottman FM (1985) Hormonal regulation of the bovine prolactin promoter in rat pituitary tumor cells. J Biol Chem 260(22):12246–12251

    CAS  Google Scholar 

  • Challis JK, Sura S, Cantin J, Curtis AW, Shade KM, McAllister TA et al (2021) Ractopamine and other growth-promoting compounds in beef cattle operations: fate and transport in feedlot pens and adjacent environments. Environ Sci Technol

  • Chappell PE, Levine JE (2000) Stimulation of gonadotropin-releasing hormone surges by estrogen. I. Role of hypothalamic progesterone receptors. Endocrinology 141(4):1477–1485

    CAS  Google Scholar 

  • Chellappa S, Huntingford FA, Strang RHC, Thomson RY (1995) Condition factor and hepatosomatic index as estimates of energy status in male three-spined stickleback. J Fish Biol 47(5):775–787. https://doi.org/10.1111/j.1095-8649.1995.tb06002.x

    Article  Google Scholar 

  • Contardo-Jara V, Lorenz C, Pflugmacher S, Nützmann G, Kloas W, Wiegand C (2011) Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha. Environ Pollut 159(1):38–44

    CAS  Google Scholar 

  • Cooper JM, Elce JS, Kellie AE (1967) The metabolism of melengestrol acetate. Biochem J 104(3):57

    Google Scholar 

  • Crespi EJ, Warne RW (2013) Environmental conditions experienced during the tadpole stage alter post-metamorphic glucocorticoid response to stress in an amphibian. Integr Comp Biol 53(6):989–1001

  • Cui Y, Wootton RJ (1988) Effects of ration, temperature and body size on the body composition, energy content and condition of the minnow, Phoxinus phoxinus (L.). J Fish Biol 32(5):749–764

    Google Scholar 

  • Custodia-Lora N, Novillo A, Callard IP (2004) Effect of gonadal steroids on progesterone receptor, estrogen receptor, and vitellogenin expression in male turtles (Chrysemys picta). J Exp Zool A Comp Exp Biol 301(1):15–25

    Google Scholar 

  • Degitz SJ, Holcombe GW, Flynn KM, Kosian PA, Korte JJ, Tietge JE (2005) Progress towards development of an amphibian-based thyroid screening assay using Xenopus laevis. organismal and thyroidal responses to the model compounds 6-propylthiouracil, methimazole, and thyroxine. Toxicol Sci 87(2):353–364

  • Denver RJ (2009) Stress hormones mediate environment-genotype interactions during amphibian development. Gen Comp Endocrinol 164(1):20–31

    CAS  Google Scholar 

  • Dodd MHI, Dodd JM (1976) The biology of metamorphosis. Physiol Amphibia 3:467–599

    CAS  Google Scholar 

  • Do-Rego JL, Mensah-Nyagan GA, Beaujean D, Vaudry D, Sieghart W, Pelletier G, Vaudry H (2000) γ-Aminobutyric acid, acting through γ-aminobutyric acid type A receptors, inhibits the biosynthesis of neurosteroids in the frog hypothalamus. Proc Natl Acad Sci 97(25):13925–13930

    CAS  Google Scholar 

  • Duncan GW, Lyster SC, Hendrix JW, Clark JJ, Webster HD (1964) Biologic effects of melengestrol acetate. Fertil Steril 15(4):419–432

    Google Scholar 

  • Elliott GA, Gibbons AJ, Greig ME (1973) A comparison of the effects of melengestrol acetate with a combination of hydrocortisone acetate and medroxyprogesterone acetate and with other steroids in the treatment of experimental allergic encephalomyelitis in Wistar rats. Acta Neuropathol 23(2):95–104

    CAS  Google Scholar 

  • Erickson SK, Shrewsbury MA, Brooks C, Meyer DJ (1980) Rat liver acyl-coenzyme A: cholesterol acyltransferase: its regulation in vivo and some of its properties in vitro. J Lipid Res 21(7):930–941

    CAS  Google Scholar 

  • Fent K (2015) Progestins as endocrine disrupters in aquatic ecosystems: concentrations, effects and risk assessment. Environ Int 84:115–130. https://doi.org/10.1016/j.envint.2015.06.012

    Article  CAS  Google Scholar 

  • Fick J, Lindberg RH, Parkkonen J, Arvidsson B, Tysklind M, Larsson DJ (2010) Therapeutic levels of levonorgestrel detected in blood plasma of fish: results from screening rainbow trout exposed to treated sewage effluents. Environ Sci Technol 44(7):2661–2666

    CAS  Google Scholar 

  • Finch BE, Blackwell BR, Faust DR, Wooten KJ, Maul JD, Cox SB, Smith PN (2013) Effects of 17α-trenbolone and melengestrol acetate on Xenopus laevis growth, development, and survival. Environ Sci Pollut Res 20(2):1151–1160

    CAS  Google Scholar 

  • Fisher DA (1975) Complications of oral contraceptives–a symposium. Liver disease and abnormalities of laboratory tests. Western J Med 122(1):40

    CAS  Google Scholar 

  • Fu X, Porter TE (2004) Glucocorticoid induction of lactotrophs and prolactin gene expression in chicken embryonic pituitary cells: a delayed response relative to stimulated growth hormone production. Endocrinology 145(3):1322–1330

    CAS  Google Scholar 

  • Glennemeier KA, Denver RJ (2002a) Small changes in whole-body corticosterone content affect larval Rana pipiens fitness components. Gen Comp Endocrinol 127(1):16–25

    CAS  Google Scholar 

  • Glennemeier KA, Denver RJ (2002b) Role for corticoids in mediating the response of Rana pipiens tadpoles to intraspecific competition. J Exp Zool 292(1):32–40

    CAS  Google Scholar 

  • Glennemeier KA, Denver RJ (2002c) Developmental changes in interrenal responsiveness in anuran amphibians. Integr Comp Biol 42(3):565–573

    CAS  Google Scholar 

  • Greig ME, Gibbons AJ, Elliott GA (1970) A comparison of the effects of melengestrol acetate and hydrocortisone acetate on experimental allergic encephalomyelitis in rats. J Pharmacol Exp Therap 173(1):85–93

    CAS  Google Scholar 

  • Hanken J, Summers CH (1988) Skull development during anuran metamorphosis: III. Role of thyroid hormone in chondrogenesis. J Exp Zool 246(2):156–170

    Google Scholar 

  • Hanselman TA, Graetz DA, Wilkie AC (2003) Manure-borne estrogens as potential environmental contaminants: a review. Environ Sci Technol 37(24):5471–5478

    CAS  Google Scholar 

  • Hayes TB (1995) Interdependence of corticosterone and thyroid hormones in larval toads (Bufo boreas). I. Thyroid hormone-dependent and independent effects of corticosterone on growth and development. J Exp Zool 271(2):95–102

    CAS  Google Scholar 

  • Hayes TB (1997) Steroids as potential modulators of thyroid hormone activity in anuran metamorphosis. Am Zoologist 37(2):185–194

    CAS  Google Scholar 

  • Hayes TB (1998) Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms. J Exp Zool 281(5):373–399

    CAS  Google Scholar 

  • Hayes TB, Wu TH (1995) Role of corticosterone in anuran metamorphosis and potential role in stress-induced metamorphosis. Netherlands J Zool (1-2)

  • Hayes T, Chan R, Licht P (1993) Interactions of temperature and steroids on larval growth, development, and metamorphosis in a toad (Bufo boreas). J Exp Zool 266(3):206–215

    CAS  Google Scholar 

  • Hirose K, Hibiya T (1968) PhysiologicalsStudies on growth-promoting effect of protein-anabolic steroinds on fish-II. Effects of 4-Cholorotestosterone acetate on Rainbow trout. Bull Jpn Soc Sci Fish 34(6):473–481

    CAS  Google Scholar 

  • Hoffmann F, Kloas W (2012) The synthetic progestogen, Levonorgestrel, but not natural progesterone, affects male mate calling behavior of Xenopus laevis. Gen Comp Endocrinol 176(3):385–390

    CAS  Google Scholar 

  • Holdway DA, Beamish FWH (1984) Specific growth rate and proximate body composition of Atlantic cod (Gadus morhua L.). J Exp Mar Biol Ecol 81(2):147–170

    Google Scholar 

  • Jacobsen BM, Horwitz KB (2012) Progesterone receptors, their isoforms and progesterone regulated transcription. Molecul Cell Endocrinol 357(1–2):18–29

    CAS  Google Scholar 

  • Jansson E, Mattsson A, Goldstone J, Berg C (2016) Sex-dependent expression of anti-Müllerian hormone (amh) and amh receptor 2 during sex organ differentiation and characterization of the Müllerian duct development in Xenopus tropicalis. Gen Comp Endocrinol 229:132–144

    CAS  Google Scholar 

  • Jhingran SG, Mukhopadhyay AK, Ajmani SK, Johnson PC (1977) Hepatic adenomas and focal nodular hyperplasia of the liver in young women on oral contraceptives. J Nucl Med 18(3):263–266

    CAS  Google Scholar 

  • Kaywin L (1936) A cytological study of the digestive system of anuran larvae during accelerated metamorphosis. Anat Rec 64(4):413–441

    Google Scholar 

  • Kazensky CA, Munson L, Seal US (1998) The effects of melengestrol acetate on the ovaries of captive wild felids. J Zoo Wildlife Med: 1–5

  • Kloas W (2002) Amphibians as a model for the study of endocrine disruptors. In: International review of cytology. Academic Press, vol. 216, pp 1–57

  • Kloas W, Urbatzka R, Opitz R, Würtz S, Behrends T, Hermelink B et al (2009) Endocrine disruption in aquatic vertebrates. Ann N Y Acad Sci 1163(1):187–200

    CAS  Google Scholar 

  • Knutson MG, Richardson WB, Reineke DM, Gray BR, Parmelee JR, Weick SE (2004) Agricultural ponds support amphibian populations. Ecol Appl 14(3):669–684

    Google Scholar 

  • Kraus WL, Montano MM, Katzenellenbogen BS (1994) Identification of multiple, widely spaced estrogen-responsive regions in the rat progesterone receptor gene. Molec Endocrinol 8(8):952–969

    CAS  Google Scholar 

  • Kumar V, Johnson AC, Trubiroha A, Tumová J, Ihara M, Grabic R, Kroupová HK (2015) The challenge presented by progestins in ecotoxicological research: a critical review. Environ Sci Technol. https://doi.org/10.1021/es5051343

    Article  Google Scholar 

  • Kvarnryd M, Grabic R, Brandt I, Berg C (2011) Early life progestin exposure causes arrested oocyte development, oviductal agenesis and sterility in adult Xenopus tropicalis frogs. Aquat Toxicol 103(1–2):18–24

    CAS  Google Scholar 

  • Lambert JJ, Belelli D, Hill-Venning C, Peters JA (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 16(9):295–303

    CAS  Google Scholar 

  • Lange IG, Daxenberger A, Schiffer B, Witters H, Ibarreta D, Meyer HHD (2002) Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment. Anal Chim Acta 473(1–2):27–37. https://doi.org/10.1016/S0003-2670(02)00748-1

    Article  CAS  Google Scholar 

  • Langlois VS, Duarte-Guterman P, Ing S, Pauli BD, Cooke GM, Trudeau VL (2010) Fadrozole and finasteride exposures modulate sex steroid- and thyroid hormone-related gene expression in Silurana (Xenopus) tropicalis early larval development. Gen Comp Endocrinol 166(2):417–427. https://doi.org/10.1016/j.ygcen.2009.11.004

    Article  CAS  Google Scholar 

  • Lauderdale JW, Goyings LS, Krzeminski LF, Zimbelman RG (1977) Studies of a progestogen (MGA) as related to residues and human consumption. J Toxicol Environ Health 3:5–33

    CAS  Google Scholar 

  • Liang YQ, Huang GY, Ying GG, Liu SS, Jiang YX, Liu S (2015) Progesterone and norgestrel alter transcriptional expression of genes along the hypothalamic–pituitary–thyroid axis in zebrafish embryos-larvae. Comp Biochemi Physiol C Toxicol Pharmacol 167:101–107

    CAS  Google Scholar 

  • Lichtenstein AH, Nicolosi RJ, Hayes KC (1980) Dietary fat and cholesterol effects on plasma lecithin cholesterol acyltransferase activity in cebus and squirrel monkeys. Atherosclerosis 37(4):603–616

    CAS  Google Scholar 

  • Liu Z, Patiño R (1993) High-affinity binding of progesterone to the plasma membrane of Xenopus oocytes: characteristics of binding and hormonal and developmental control. Biol Reprod 49(5):980–988

    CAS  Google Scholar 

  • Liu XS, Ma C, Hamam AW, Liu XJ (2005) Transcription-dependent and transcription-independent functions of the classical progesterone receptor in Xenopus ovaries. Develop Biol 283(1):180–190

    CAS  Google Scholar 

  • Liu S, Ying GG, Zhang RQ, Zhou LJ, Lai HJ, Chen ZF (2012a) Fate and occurrence of steroids in swine and dairy cattle farms with different farming scales and wastes disposal systems. Environ Pollut 170:190–201. https://doi.org/10.1016/j.envpol.2012.07.016

    Article  CAS  Google Scholar 

  • Liu S, Ying GG, Zhao JL, Zhou LJ, Yang B, Chen ZF, Lai HJ (2012b) Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants. J Environ Monitor 14(2):482–491. https://doi.org/10.1039/c1em10783f

    Article  CAS  Google Scholar 

  • Liu S, Ying GG, Liu YS, Peng FQ, He LY (2013) Degradation of norgestrel by bacteria from activated sludge: comparison to progesterone. Environ Sci Technol 47(18):10266–10276

    CAS  Google Scholar 

  • Liu S, Chen H, Zhou GJ, Liu SS, Yue WZ, Yu S et al (2015a) Occurrence, source analysis and risk assessment of androgens, glucocorticoids and progestagens in the Hailing Bay region, South China Sea. Sci Total Environ 536:99–107

    CAS  Google Scholar 

  • Liu S, Chen H, Xu XR, Liu SS, Sun KF, Zhao JL, Ying GG (2015b) Steroids in marine aquaculture farms surrounding Hailing Island, South China: occurrence, bioconcentration, and human dietary exposure. Sci Total Environ 502:400–407

    CAS  Google Scholar 

  • Liu S, Ying GG, Liu YS, Yang YY, He LY, Chen J et al (2015c) Occurrence and removal of progestagens in two representative swine farms: effectiveness of lagoon and digester treatment. Water Res 77:146–154

    CAS  Google Scholar 

  • Lorenz C, Opitz R, Lutz I, Kloas W (2009a) Teratogenic effects of chronic treatment with corticosterone on tadpoles of Xenopus laevis. Ann N Y Acad Sci 1163(1):454–456

    CAS  Google Scholar 

  • Lorenz C, Opitz R, Lutz I, Kloas W (2009b) Corticosteroids disrupt amphibian metamorphosis by complex modes of action including increased prolactin expression. Comp Biochem Physiol C: Toxicol Pharmacol 150(2):314–321

    Google Scholar 

  • Lorenz C, Contardo-Jara V, Pflugmacher S, Wiegand C, Nützmann G, Lutz I, Kloas W (2011a) The synthetic gestagen levonorgestrel impairs metamorphosis in Xenopus laevis by disruption of the thyroid system. Toxicol Sci 123(1):94–102

    CAS  Google Scholar 

  • Lorenz C, Contardo-Jara V, Trubiroha A, Krüger A, Viehmann V, Wiegand C et al (2011b) The synthetic gestagen Levonorgestrel disrupts sexual development in Xenopus laevis by affecting gene expression of pituitary gonadotropins and gonadal steroidogenic enzymes. Toxicol Sci 124(2):311–319

    CAS  Google Scholar 

  • Lorenz C, Krüger A, Schöning V, Lutz I (2018) The progestin norethisterone affects thyroid hormone-dependent metamorphosis of Xenopus laevis tadpoles at environmentally relevant concentrations. Ecotoxicol Environ Saf 150:86–95

    CAS  Google Scholar 

  • Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA et al (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Develop 9(18):2266–2278

    CAS  Google Scholar 

  • Maggi A, Perez J (1984) Progesterone and estrogens in rat brain: modulation of GABA (γ-aminobutyric acid) receptor activity. Eur J Pharmacol 103(1–2):165–168

    CAS  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232(4753):1004–1007

    CAS  Google Scholar 

  • Mansell DS, Bryson RJ, Harter T, Webster JP, Kolodziej EP, Sedlak DL (2011) Fate of endogenous steroid hormones in steer feedlots under simulated rainfall-induced runoff. Environ Sci Technol 45(20):8811–8818

    CAS  Google Scholar 

  • Mathieu-Denoncourt J, Martyniuk CJ, de Solla SR, Balakrishnan VK, Langlois VS (2014) Sediment contaminated with the azo dye disperse yellow 7 alters cellular stress-and androgen-related transcription in Silurana tropicalis larvae. Environ Sci Technol 48(5):2952–2961

    CAS  Google Scholar 

  • Mathieu-Denoncourt J, de Solla SR, Langlois VS (2015) Chronic exposures to monomethyl phthalate in Western clawed frogs. Gen Comp Endocrinol 219:53–63

    CAS  Google Scholar 

  • Mauvais-Jarvis P, Kuttenn F, Gompel A (1986) Antiestrogen action of progesterone in breast tissue. Breast Cancer Tes Treat 8(3):179–188

    CAS  Google Scholar 

  • Motulsky HJ, Brown RE (2006) Detecting outliers when fitting data with nonlinear regression: a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinf 7:123. https://doi.org/10.1186/1471-2105-7-123

    Article  CAS  Google Scholar 

  • Nervi FO, Del Pozo R, Covarrubias CF, Ronco BO (1983) The effect of progesterone on the regulatory mechanisms of biliary cholesterol secretion in the rat. Hepatology 3(3):360–367. https://doi.org/10.1002/hep.1840030314

    Article  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Garland Publishing, New York

    Google Scholar 

  • Nishikawa A, Kaiho M, Yoshizato K (1989) Cell death in the anuran tadpole tail: thyroid hormone induces keratinization and tail-specific growth inhibition of epidermal cells. Dev Biol 131(2):337–344. https://doi.org/10.1016/S0012-1606(89)80007

    Article  CAS  Google Scholar 

  • Ojoghoro JO, Chaudhary AJ, Campo P, Sumpter JP, Scrimshaw MD (2017) Progesterone potentially degrades to potent androgens in surface waters. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.11.176

    Article  Google Scholar 

  • Opitz R, Hartmann S, Blank T, Braunbeck T, Lutz I, Kloas W (2006) Evaluation of histological and molecular endpoints for enhanced detection of thyroid system disruption in Xenopus laevis tadpoles. Toxicol Sci 90(2):337–348

    CAS  Google Scholar 

  • Orlando EF, Ellestad LE (2014) Sources, concentrations, and exposure effects of environmental gestagens on fish and other aquatic wildlife, with an emphasis on reproduction. Gen Comp Endocrinol 203:241–249. https://doi.org/10.1016/j.ygcen.2014.03.038

    Article  CAS  Google Scholar 

  • Parkinson A (1996) An overview of current cytochrome P450 technology for assessing the safety and efficacy of new materials. Toxicol Pathol 24(1):45–57

    CAS  Google Scholar 

  • Peng FQ, Ying GG, Yang B, Liu S, Lai HJ, Liu YS et al (2014) Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): transformation kinetics and products identification. Chemosphere 95:581–588

    CAS  Google Scholar 

  • Petz LN, Ziegler YS, Schultz JR, Kim H, Kemper JK, Nardulli AM (2004) Differential regulation of the human progesterone receptor gene through an estrogen response element half site and Sp1 sites. J Steroid Biochem Molec Biol 88(2):113–122

    CAS  Google Scholar 

  • Pickford DB, Hetheridge MJ, Caunter JE, Hall AT, Hutchinson TH (2003) Assessing chronic toxicity of bisphenol A to larvae of the African clawed frog (Xenopus laevis) in a flow-through exposure system. Chemosphere 53(3):223–235

    CAS  Google Scholar 

  • Qu S, Kolodziej EP, Cwiertny DM (2012) Phototransformation rates and mechanisms for synthetic hormone growth promoters used in animal agriculture. Environ Sci Technol 46(24):13202–13211

    CAS  Google Scholar 

  • Qu S, Kolodziej EP, Cwiertny DM (2014) Sorption and mineral-promoted transformation of synthetic hormone growth promoters in soil systems. J Agricultural Food Chem 62(51):12277–12286

    CAS  Google Scholar 

  • Rasband WS (2012) ImageJ: Image processing and analysis in Java. Astrophysics Source Code Library

  • Ray P, Zhao Z, Knowlton KF (2013) Emerging contaminants in livestock manure: hormones, antibiotics and antibiotic resistance genes. Sustain Anim Agric: 268–283

  • Robitaille J, Langlois VS (2019) Consequences of steroid-5α-reductase deficiency and inhibition in vertebrates. (in press)

  • Säfholm M, Jansson E, Fick J, Berg C (2016) Molecular and histological endpoints for developmental reproductive toxicity in Xenopus tropicalis: Levonorgestrel perturbs anti-Müllerian hormone and progesterone receptor expression. Comp Biochem Physiol C Toxicol Pharmacol 181–182:9–18. https://doi.org/10.1016/j.cbpc.2015.12.001

  • Säfholm M, Ribbenstedt A, Fick J, Berg C (2014) Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestagens. Philosophical Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2013.0577

    Article  Google Scholar 

  • Satyaswaroop PG et al (1992) Apparent resistance in human endometrial carcinoma during combination treatment with tamoxifen and progestin may result from desensitization following downregulation of tumor progesterone receptor. Cancer Lett 62:107–114

    CAS  Google Scholar 

  • Schiffer B, Daxenberger A, Meyer K, Meyer HHD (2001) The fate of trenbolone acetate and melengestrol acetate after application as growth promoters in cattle: environmental studies. Environ Health Persp 109(11):1145–1151. https://doi.org/10.1289/ehp.01109114

    Article  CAS  Google Scholar 

  • Schiffer B, Totsche KU, Jann S, Kögel-Knabner I, Meyer K, Meyer HH (2004) Mobility of the growth promoters trenbolone and melengestrol acetate in agricultural soil: column studies. Sci Total Environ 326(1–3):225–237

    CAS  Google Scholar 

  • Schindler AE, Campagnoli C, Druckmann R, Huber J, Pasqualini JR, Schweppe KW, Thijssen JHH (2003) Classification and pharmacology of progestins. Maturitas 46:S7–S16. https://doi.org/10.1016/j.maturitas.2003.09.014

    Article  CAS  Google Scholar 

  • Schreiber AM, Brown DD (2003) Tadpole skin dies autonomously in response to thyroid hormone at metamorphosis. Proc Natl Acad Sci 100(4):1769–1774

    CAS  Google Scholar 

  • Sherlock S (1975) Hepatic adenomas and oral contraceptives. Gut 16(9):753

    CAS  Google Scholar 

  • Shore Pruden A (2009) Hormones and pharmaceuticals generated by concentrated animal feeding operations. Shore LS (ed) Springer New York

  • Simone DA (1990) The effects of the synthetic steroid 17-alpha-methyltestosterone on the growth and organ morphology of the channel catfish (Ictalurus punctatus). Aquaculture 84(1):81–93. https://doi.org/10.1016/0044-8486(90)90302-4

    Article  CAS  Google Scholar 

  • Steele WB IV, Garcia SN, Huggett DB, Venables BJ, Barnes SE III, La Point TW (2013) Tissue-specific bioconcentration of the synthetic steroid hormone medroxyprogesterone acetate in the common carp (Cyprinus carpio). Environ Toxicol Pharmacol 36(3):1120–1126

    CAS  Google Scholar 

  • Stelmanska E, Kmiec Z, Swierczynski J (2012) The gender-and fat depot-specific regulation of leptin, resistin and adiponectin genes expression by progesterone in rat. J Steroid Biochem Molec Biol 132(1–2):160–167

    CAS  Google Scholar 

  • Suarez AA, Brunt EM, Di Bisceglie AM (2001) A 35-year-old woman with progesterone implant contraception and multiple liver masses. Sem Liver Dis 21(3):453–460

    CAS  Google Scholar 

  • Swartz TM, Miller JR (2019) Managing farm ponds as breeding sites for amphibians: key trade-offs in agricultural function and habitat conservation. Ecol Appl 29(7):

    Google Scholar 

  • Tang H, Liu Y, Li J, Yin Y, Li G, Chen Y et al (2016) Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish. Scientific Rep 6:28545

    Google Scholar 

  • Thomson P, Langlois VS (2018) Developmental profiles of progesterone receptor transcripts and molecular responses to gestagen exposure during Silurana tropicalis early development. Gen Comp Endocrinol 265(May):4–14. https://doi.org/10.1016/j.ygcen.2018.05.017

    Article  CAS  Google Scholar 

  • Tian J, Kim S, Heilig E, Ruderman JV (2000) Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation. Proc Natl Acad Sci 97(26):14358–14363

    CAS  Google Scholar 

  • Traish AM, Melcangi RC, Bortolato M, Garcia-Segura LM, Zitzmann M (2015) Adverse effects of 5α-reductase inhibitors: what do we know, don’t know, and need to know?

  • USEPA, 2012. EPI Suite™ (Estimation Programs Interface). United States Environmental Protection Agency, Washington, D.C., USA http://www.epa.gov/oppt/exposure/pubs/episuite.htm

  • Waxman DJ, Attisano C, Guengerich FP, Lapenson DP (1988) Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6β-hydroxylase cytochrome P-450 enzyme. Arch Biochem Biophys 263(2):424–436

    CAS  Google Scholar 

  • Williams JR, Rayburn JR, Cline GR, Sauterer R, Friedman M (2015) Effect of allyl isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos. Toxicol Rep 2:222–227

    CAS  Google Scholar 

  • Wright ML, Cykowski LJ, Lundrigan L, Hemond KL, Kochan DM, Faszewski EE, Anuszewski CM (1994) Anterior pituitary and adrenal cortical hormones accelerate or inhibit tadpole hindlimb growth and development depending on stage of spontaneous development or thyroxine concentration in induced metamorphosis. J Exp Zool 270(2):175–188

    CAS  Google Scholar 

  • Ziková A, Lorenz C, Hoffmann F, Kleiner W, Lutz I, Stöck M, Kloas W (2017) Endocrine disruption by environmental gestagens in amphibians: a short review supported by new in vitro data using gonads of Xenopus laevis. Chemosphere 181:74–82. https://doi.org/10.1016/j.chemosphere.2017.04.021

    Article  CAS  Google Scholar 

  • Zucchi S, Castiglioni S, Fent K (2013) Progesterone alters global transcription profiles at environmental concentrations in brain and ovary of female zebrafish (Danio rerio). Environ Sci Technol 47(21):12548–12556

Download references

Acknowledgements

The authors wish to acknowledge Sarah Wallace (Royal Military College of Canada, ON (RMCC), Chrissy Emerton (RMCC), and Tash-Lynn Colson (Queen’s University, ON), and Meghan Hinds (RMCC) for their contributions with animal care, sampling, and molecular analyses.

Funding

This research project was funded by the support of a Discovery Grant of the Natural Sciences and Engineering Research Council of Canada [NSERC-DG-418576-2102] and the Canada Research Chair [CRC-950-230442] to VSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie S. Langlois.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomson, P., Pineda, M., Yargeau, V. et al. Chronic Exposure to Two Gestagens Differentially Alters Morphology and Gene Expression in Silurana tropicalis. Arch Environ Contam Toxicol 80, 745–759 (2021). https://doi.org/10.1007/s00244-021-00831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-021-00831-5

Navigation