Skip to main content
Log in

Experimental and Theoretical Determination of Henry’s Law Constant for Polychlorinated Biphenyls: Its Dependence on Solubility and Degree of Chlorination

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The fate of a pollutant in the environment depends on its interaction with the surroundings. Henry’s law constant (HLC) is one of the important properties useful for assessment of environmental risk and estimation of mass transfer of the pollutant between water and air. Estimation of HLC is relatively a difficult task for many of the organic pollutants due to their very low aqueous solubility. People have attempted the measurement of HLC for persistent organic pollutants, such as polychlorinated biphenyls (PCBs), but due to the difficulty in estimation, there is a variation of approximately 2–3 orders of magnitude in reported values of HLC for PCBs in the literature. A study was performed for estimation of HLC for PCBs using the static method with a modification that eliminates any disturbance in equilibrium due to sampling and also avoids removal or addition of material in or out of the system unlike the conventional methods. The results were consistent with the literature values. The experimental values of HLC ranged from 0.004 to 0.08 for different congeners. All of the experimental values were in agreement with the literature values. The experimental data was further used for deriving a correlation equation for theoretical estimation of the HLC from aqueous solubility and chlorination number. The equation gave a very good estimation of HLC values for all the PCBs congeners except single- and double-chlorinated congeners. The theoretically predicted values were also found to be in close agreement with the reported HLC values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham MH, Andonian HJ, Whiting GS, Leo A, Taft S (1994) Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapors in water at 298 K, a new method for its determination. J Chem Soc Perkins Trans 2(2):1777–1791

    Article  Google Scholar 

  • Altschuh J, Brüggemann R, Santl H, Eichinger G, Piringer OG (1999) Henry’s law constants for diverse organic chemicals: experimental determination and comparison of estimation methods. Chemosphere 39:1871–1887

    Article  CAS  Google Scholar 

  • Ashworth RA, Howe GB, Mullins ME, Rogers TN (1988) Air–water partitioning coefficients of organics in dilute aqueous solutions. J Hazard Mater 18:25–36

    Article  CAS  Google Scholar 

  • Bamford HA, Poster DL, Baker JE (2000) Henry’s law constants of polychlorinated biphenyl congeners and their variation with temperature. J Chem Eng Data 45:1069–1074

    Article  CAS  Google Scholar 

  • Bhangare RC, Ajmal PY, Tiwari M, Sahu SK, Pandit GG (2016) Rapid and solventless analysis of polychlorinated biphenyls in packaged milk using gas chromatography. Curr Chromatogr 3:64–72

    Article  CAS  Google Scholar 

  • Boddy R, Smith G (2009) Statistical methods in practice: for scientists and technologists. Wiley, Hoboken

    Book  Google Scholar 

  • Bopp RF, Simpson HJ, Olsen CR, Kostyk N (1981) Polychlorinated biphenyls in sediments of the tidal Hudson River, New York. Environ Sci Technol 15:210–216

    Article  CAS  Google Scholar 

  • Brennan RA, Nirmalakhandan N, Speece RE (1998) Comparison of predictive methods for Henrys law coefficients of organic chemicals. Water Res 32:1901–1911

    Article  CAS  Google Scholar 

  • Brunner S, Hornung E, Santl S, Wolff E, Pringer OG, Altschuh J, Bruggemann R (1990) Henry’s law constant for polychlorinated biphenyls: experimental determination and structure-property relationships. Environ Sci Technol 24:1751–1754

    Article  CAS  Google Scholar 

  • Burkhard LP, Armstrong DE, Anders AW (1985a) Partitioning behavior of polychlorinated biphenyls. Chemosphere 14(11/12):1703–1716

    Article  CAS  Google Scholar 

  • Burkhard LP, Armstrong DE, Andren AW (1985b) Henry’s law constants for the PCBs. Environ Sci Technol 19:590–596

    Article  CAS  Google Scholar 

  • Chao HP, Lee JF, Chiou CT (2017) Determination of the Henry’s law constants of low-volatility compounds via the measured air-phase transfer coefficients. Water Res 120:238–244

    Article  CAS  Google Scholar 

  • Dewulf J, Drijvers D, Langenhove HV (1995) Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range. Atmos Environ 29(3):323–331

    Article  CAS  Google Scholar 

  • Dewulf J, Langenhove HV, Everaert P (1999) Determination of Henry’s law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques. J Chromatogr A 830:353–363

    Article  CAS  Google Scholar 

  • Dunnivant FM, Coates JT, Elzerman AW (1988) Experimentally determined Henry’s law constants for 17 PCBs. Environ Sci Technol 22:448–453

    Article  CAS  Google Scholar 

  • Dunnivant FM, Elzerman AW, Jurs PC, Hasan MN (1992) Quantitative structure-property relationships for aqueous solubilities and Henry’s law constants of polychlorinated biphenyls. Environ Sci Technol 26:1567–1573

    Article  CAS  Google Scholar 

  • Eisert R, Levsen K (1996) Solid-phase microextraction coupled to gas chromatography: a new method for the analysis of organics in water. J Chromatogr A 733(1–2):143–157

    Article  CAS  Google Scholar 

  • Ettre L, Welter C, Kolb B (1993) Determination of gas–liquid partition coefficients by automatic equilibrium headspace-gas chromatography utilizing the phase ratio variation method. Chromatographia 35(1–2):73–84

    Article  CAS  Google Scholar 

  • Gharagheizi F, Eslamimanesh A, Mohammadi AH, Richon D (2012) Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water. J Chem Thermodyn 47:295–299

    Article  CAS  Google Scholar 

  • Goss KU (2006) Prediction of the temperature dependency of Henry’s law constant using poly-parameter linear free energy relationships. Chemosphere 64:1369–1374

    Article  CAS  Google Scholar 

  • Gossett JM (1987) Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons. Environ Sci Technol 21:202–208

    Article  CAS  Google Scholar 

  • Hansen KC, Zhou Z, Yaws CL, Aminabhavi TM (1993) Determination of Henry’s law constants of organics in dilute aqueous solutions. J Chem Eng Data 38:546–550

    Article  CAS  Google Scholar 

  • Helm PA, Jantunen LM, Ridal J, Bidleman TF (2003) Spatial distribution of polychlorinated naphthalenes in air over the Great Lakes and air and water gas exchange in Lake Ontario. Environ Toxicol Chem 22:1937–1944

    CAS  Google Scholar 

  • Kolb B, Welter C, Bichler C (1992) Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration. Chromatographia 34(5–8):235–240

    Article  CAS  Google Scholar 

  • Lincoff AH, Gossett JM (1984) Gas transfer at water surfaces. In: Brutsaert W, Jirka GH (eds) Reidel, Dordrecht

  • Lyman WJ (1985) Estimation of physical properties. In: Neely B, Blau GR (eds) Environmental exposure from chemicals. CRC Press, Boca Raton, pp 13–47

    Google Scholar 

  • Mackay D, Shiu WY (1981) A critical review of Henry’s law constants for chemicals of environmental interest. J Phys Chem Ref Data 10:1175–1199

    Article  CAS  Google Scholar 

  • Mackay D, Shiu WY, Sutherland RP (1979) Determination of air–water Henry’s law constants for hydrophobic pollutants. Environ Sci Technol 13:333–337

    Article  CAS  Google Scholar 

  • Makino M (1998) Prediction of aqueous solubility coefficients of polychlorinated biphenyls by use of computer-calculated molecular properties. Environ Int 24(5/6):653–663

    Article  CAS  Google Scholar 

  • McAuliffe C (1971) Gas chromatographic determination of solutes by multiple phase equilibrium. Chem Technol 1:46–51

    Google Scholar 

  • McVeety BD, Hites RA (1988) Atmospheric deposition of polycyclic aromatic-hydrocarbons to water surfaces: a mass balance approach. Atmos Environ 22(3):511–536

    Article  CAS  Google Scholar 

  • Meylan WM, Howard PH (1991) Bond contribution method for estimating Henry’s law constants. Environ Toxicol Chem 10:1283–1293

    Article  CAS  Google Scholar 

  • Michalski R (2016) Ion chromatography and related techniques. J Chromatogr Sep Tech 7:325

    Article  Google Scholar 

  • Motladiile S, Kwaambwa HM, Sichilongo K (2012) Development and validation of a gas chromatography-mass spectrometry method for the determination of PCBs in transformer oil samples-application on real samples from Botswana. J Chromatograph Sep Tech 2:116–124

    Google Scholar 

  • Motlagh S, Pawliszyn J (1993) On-line monitoring of flowing samples using solid phase microextraction-gas chromatography. Anal Chim Acta 284:265–273

    Article  CAS  Google Scholar 

  • Munz C, Roberts PV (1987) Air–water phase equilibria of volatile organic solutes. J Am Water Works Assoc 79(5):62–69

    Article  CAS  Google Scholar 

  • Murphy TJ, Pokojowczyk JC, Mullin MD (1983) Vapor exchange of PCBs with Lake Michigan: the atmosphere as a sink for PCBs. In: Mackay D, Patterson S, Eisenreich SJ, Simmons MS (eds) Physical behavior of PCBs in the Great Lakes. Ann Arbor Science, Ann Arbor, pp 49–58

    Google Scholar 

  • Murray MW, Andren AW (1992) Precipitation scavenging of polychlorinated biphenyl congeners in the great lakes region. Atmos Environ Part A 26(5):883–897

    Article  Google Scholar 

  • Nelson ED, McConnell LL, Baker JE (1998) Diffusive exchange of gaseous polycyclic aromatic hydrocarbons and polychlorinated biphenyls across the air water interface of the Chesapeake Bay. Environ Sci Technol 32:912–919

    Article  CAS  Google Scholar 

  • Nirmalakhandan NN, Speece RE (1988) QSAR model for predicting Henry’s constant. Environ Sci Technol 22:1349–1357

    Article  CAS  Google Scholar 

  • Odabasi TM, Adali M (2016) Determination of temperature dependent Henry’s law constants of polychlorinated naphthalenes: application to air-sea exchange in Izmir Bay. Atmos Environ 147:200–208

    Article  CAS  Google Scholar 

  • Page BD, Lacroix G (1993) Application of solid-phase microextraction to the headspace gas chromatographic analysis of halogenated volatiles in selected foods. J Chromatogr 648:199–211

    Article  CAS  Google Scholar 

  • Page BD, Lacroix G (1997) Application of solid-phase microextraction to the headspace gas chromatographic analysis of semi-volatile organochlorine contaminants in aqueous matrices. J Chromatogr A 757:173–182

    Article  Google Scholar 

  • Patil GS (1991) Correlation of aqueous solubility and octanol-water partition coefficient based on molecular structure. Chemosphere 22(8):723–738

    Article  CAS  Google Scholar 

  • Poland A, Knutson JC (1982) 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Ann Rev Pharmacol Toxicol 22:517–554

    Article  CAS  Google Scholar 

  • Robertson LW, Hansen LG (eds) (2001) PCBs: recent advances in environmental toxicology and health effects. University Press of Kentucky, Lexington, p 11. ISBN 0813122260

    Google Scholar 

  • Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981

    Article  CAS  Google Scholar 

  • Santos FJ, Galceran MT, Fraisse D (1996) Application of solid-phase microextraction to the analysis of volatile organic compounds in water. J Chromatogr A 742:181–189

    Article  CAS  Google Scholar 

  • Staudinger J, Roberts PV (1996) A critical review of Henry’s law constants for environmental applications. Crit Rev Environ Sci Technol 26:205–297

    Article  CAS  Google Scholar 

  • Sundqvist KL, Wingfors H, Brorstöm LE, Wiberg K (2004) Air-sea gas exchange of HCHs and PCBs and enantiomers of a-HCH in the Kattegat Sea region. Environ Pollut 128:73–83

    Article  CAS  Google Scholar 

  • Thomas SP, Ranjan RS, Webster GRB, Sarna LP (1996) Protocol for the analysis of high concentrations of benzene, toluene, ethylbenzene, and xylene isomers in water using automated solid phase microextraction-GC-FID. Environ Sci Technol 30:1521–1526

    Article  CAS  Google Scholar 

  • Totten LA, Brunciak PA, Gigliotti CL, Dachs J, Glenn TR, Nelson ED, Eisenreich SJ (2001) Dynamic air-water exchange of polychlorinated biphenyls in the New York–New Jersey Harbor Estuary. Environ Sci Technol 35:3834–3840

    Article  CAS  Google Scholar 

  • Tülp HC, KeU Goss, Schwarzenbach RP, Fenner K (2008) Experimental determination of LSER parameters for a set of 76 diverse pesticides and pharmaceuticals. Environ Sci Technol 42:2034–2040

    Article  CAS  Google Scholar 

  • Zell M, Neu HJ, Ballschmiter K (1978) Single component analysis of polychlorinated biphenyl (PCB)—and chlorinated pesticide residues in marine fish samples. Fresenius Z Anal Chem 292:97–107

    Article  CAS  Google Scholar 

  • Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65(14):1843–1852

    Article  CAS  Google Scholar 

  • Zhang Z, Yang MJ, Pawliszyn J (1994) Solid-phase microextraction. A solvent-free alternative for sample preparation. Anal Chem 66(17):844–853

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhangare, R.C., Ajmal, P.Y., Rathod, T.D. et al. Experimental and Theoretical Determination of Henry’s Law Constant for Polychlorinated Biphenyls: Its Dependence on Solubility and Degree of Chlorination. Arch Environ Contam Toxicol 76, 142–152 (2019). https://doi.org/10.1007/s00244-018-0577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-018-0577-z

Navigation