Skip to main content

Advertisement

Log in

Profiling of Selected Functional Metabolites in the Central Nervous System of Marine Medaka (Oryzias melastigma) for Environmental Neurotoxicological Assessments

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The simultaneous profiling of 43 functional metabolites in the brain of the small model vertebrate organism, marine medaka (Oryzais melastigma), has been accomplished via dansyl chloride derivatization and LC–MS/MS quantification. This technique was applied to examine effects of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47), one of the most abundant polybrominated diphenyl ether flame retardants in the natural environment, on the central nervous system (CNS) of vertebrates. The model teleosts were fed with bioencapsulated Artemia nauplii for up to 21 days. Multivariate statistical analysis has demonstrated that levels of numerous classical neurotransmitters and their metabolites in the CNS of the fish were perturbed even at the early phase of dietary exposure. Subsequent metabolic pathway analysis further implied potential impairment of the arginine and proline metabolism; glycine, serine and threonine metabolism; d-glutamine and d-glutamate metabolism; alanine, aspartate, and glutamate metabolism; valine, leucine, and isoleucine biosynthesis, and the cysteine and methionine metabolism in the brain of the test organism. Our results demonstrate that targeted profiling of functional metabolites in the CNS may shed light on how the various neurological pathways of vertebrates, including humans, are affected by toxicant/stress exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alaee M, Arias P, Sjodin A, Bergman A (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29:683–689

    Article  CAS  Google Scholar 

  • Anderson TD, MacRae JD (2006) Polybrominated diphenyl ethers in fish and wastewater samples from an area of the Penobscot River in central Maine. Chemosphere 62:1153–1160

    Article  Google Scholar 

  • Bisesi JH, Bridges W, Klaine SJ (2014) Effects of the antidepressant venlafaxine on fish brain serotonin and predation behavior. Aquat Toxicol 148:130–138

    Article  CAS  Google Scholar 

  • Bradner JM, Suragh TA, Wilson W, Lazo CR, Stout KA, Kim HM et al (2013) Exposure to the polybrominated diphenyl ether mixture DE-71 damages the nigrostriatal dopamine system: role of dopamine handling in neurotoxicity. Exp Neurol 241:138–147

    Article  CAS  Google Scholar 

  • Cai HL, Zhu RH, Li HD (2010) Determination of dansylated monoamine and amino acid neurotransmitters and their metabolites in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Biochem 396:103–111

    Article  CAS  Google Scholar 

  • Dingemans MML, de Groot A, van Kleef RGDM, Bergman A, van den Berg M, Vijverberg HPM et al (2008) Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells. Environ Health Perspect 116:637–643

    Article  CAS  Google Scholar 

  • Eriksson P, Viberg H, Jakobsson E, Örn U, Fredriksson A (2002) A brominated flame retardant, 2,2′,4,4′,5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alternations in mice during a critical phase of neonatal brain development. Toxicol Sci 67:98–103

    Article  CAS  Google Scholar 

  • Eskenazi B, Chevrier J, Rauch SA, Koqut K, Harley KG, Johnson C et al (2013) In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study. Environ Health Perspect 121:257–262

    Article  Google Scholar 

  • Fitsanakis VA, Aschner M (2004) The importance of glutamate, glycine and gamma-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity. Toxicol Appl Pharmacol 204:343–354

    Article  Google Scholar 

  • Guglielmotti V, Cristino L (2006) The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry. Brain Res Bull 69:475–488

    Article  CAS  Google Scholar 

  • Guo K, Li L (2009) Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal Chem 81:3919–3932

    Article  CAS  Google Scholar 

  • Harry JG, Billingsley M, Bruinink A, Campbell IL, Classen W, Dorman DC et al (1998) In vitro techniques for the assessment of neurotoxicity. Environ Health Perspect 106:131–158

    Article  CAS  Google Scholar 

  • Herbstman JB, Sjödin A, Kurzon M, Ledeman SA, Jones RS, Rauh V et al (2010) Prenatal exposure to PBDEs and neurodevelopmental. Environ Health Perspect 118:712–719

    Article  CAS  Google Scholar 

  • Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719

    Article  CAS  Google Scholar 

  • Kodavanti PRS, Cobum CG, Moser VC, MacPhail RC, Fenton SE, Stoker TE et al (2010) Developmental exposure to a commercial PBDE mixture, DE-71: neurobehavioral, hormonal, and reproductive effects. Toxicol Sci 116:297–312

    Article  CAS  Google Scholar 

  • Li S, Pozhitkov A, Ryan RA, Manning CS, Brown-Pterson N, Brouwer M (2010) Constructing a fish metabolic network model. Genome Biol 11:R115

    Article  CAS  Google Scholar 

  • Marsh G, Stenutz R, Bergman A (2003) Synthesis of hydroxylated and methoxylated polybrominated diphenyl ethers—natural products and potential polybrominated diphenyl ether metabolites. Eur J Org Chem 14:2566–2576

    Article  Google Scholar 

  • National Research Council (1992) Environmental neurotoxicology. The National Academies Press, Washington

    Google Scholar 

  • Reiter L (1978) An introduction to neurobehavioural toxicology. Environ Health Perspect 26:5–7

    Article  CAS  Google Scholar 

  • Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD (2011) Zebrafish neurotransmitter system as potential pharmacological and toxicological targets. Neurotoxicol Teratol 33:608–617

    Article  CAS  Google Scholar 

  • Sanders JM, Chen LJ, Lebetkin EH, Burka LT (2006) Metabolism and disposition of 2,2′,4,4′-tetrabromodiphenyl ether following administration of single or multiple doses to rats and mice. Xenobiotica 36:103–117

    Article  CAS  Google Scholar 

  • Signore IA, Guerrero N, Loosli F, Colombo A, Villalón A, Wittbrodt J et al (2009) Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry. Phil Trans R Soc B 364:991–1003

    Article  Google Scholar 

  • Stapleton HM, Letcher RJ, Li J, Baker JE (2004) Dietary accumulation and metabolism of polybrominated diphenyl ethers by juvenile carp (Cyprinus carpio). Environ Toxicol Chem 23:1939–1946

    Article  CAS  Google Scholar 

  • Stapleton HM, Brazil B, Holbrook RD, Mitchelmore CL, Benedict R, Konstantinov A (2006) In vivo and in vitro debromination of decabromodiphenyl ether (BDE 209) by juvenile rainbow trout and common carp. Environ Sci Technol 40:4653–4658

    Article  CAS  Google Scholar 

  • Tomy GT, Palace VP, Halldorson T, Braekevelt E, Danell R, Wautier K et al (2004) Bioaccumulation, biotransformation, and biochemical effects of brominated diphenyl ethers in juvenile lake trout (Salvelinus namaycush). Environ Sci Technol 38:1496–1504

    Article  CAS  Google Scholar 

  • U. S. EPA (U. S. Environmental Protection Agency). (2009) Polybrominated diphenyl ethers (PBDEs) Action Plan Summary. http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/pbdes_ap_2009_1230_final.pdf. Accessed 8 Oct 2013

  • van de Merwe JP, Chan AKY, Lei ENY, Yau MS, Lam MHW, Wu RSS (2011) Bioaccumulation and maternal transfer of PBDE 47 in the marine medaka (Oryzias melastigma). Aquat Toxicol 103:199–204

    Article  Google Scholar 

  • van Thriel C, Westerink R, Beste C, Bale AS, Lein PJ, Leist M (2012) Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 33:911–924

    Article  Google Scholar 

  • Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomics data analysis and interpretation. Nucl Acid Res 37:W652–W660

    Article  CAS  Google Scholar 

  • Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 30-making metabolomics more meaningful. Nucl Acid Res. doi:10.1093/nar/gkv380

    Google Scholar 

  • Yan T, Xiang L, Xuejun J, Chengzhi C, Youbin Q, Xuelan Y et al (2012) Spatial learning and memory deficit of low level polybrominated diphenyl ethers-47 in male adult rat is modulated by intracellular glutamate receptors. J Toxicol Sci 37:223–233

    Article  CAS  Google Scholar 

  • Ye RR, Lei ENY, Lam MHW, Chan AKY, Bo J, van de Merwe JP, Fong ACC, Yang MS, Lee JS, Segner HE, Wong CKC, Wu RSS, Au DWT (2012) Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47. Environ Sci Poll Rep 19:2477–2487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Laboratory for Marine Pollution, City University of Hong Kong, and the State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hon-Wah Lam.

Additional information

Elva Ngai-Yu Lei and Man-Shan Yau are co-first authors of this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1084 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, E.NY., Yau, MS., Yeung, CC. et al. Profiling of Selected Functional Metabolites in the Central Nervous System of Marine Medaka (Oryzias melastigma) for Environmental Neurotoxicological Assessments. Arch Environ Contam Toxicol 72, 269–280 (2017). https://doi.org/10.1007/s00244-016-0342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0342-0

Keywords

Navigation