Skip to main content
Log in

Occurrence of Phthalate Diesters in Particulate and Vapor Phases in Indoor Air and Implications for Human Exposure in Albany, New York, USA

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Phthalate diesters are used as plasticizers in a wide range of consumer products. Because phthalates have been shown in laboratory animal studies to be toxic, human exposure to these chemicals is a matter of concern. Nevertheless, little is known about inhalation exposure to phthalates in the United States. In this study, occurrence of nine phthalates was determined in 60 indoor air samples collected in 2014 in Albany, New York, USA. Airborne particulate and vapor phase samples were collected from various sampling locations by use of a low-volume air sampler. The median concentrations of nine phthalates in air samples collected from homes, offices, laboratories, schools, salons (hair and nail salons), and public places were 732, 143, 170, 371, 2600, and 354 ng/m3, respectively. Diethyl phthalate (DEP) was found at the highest concentrations, which ranged from 4.83 to 2250 ng/m3 (median 152) followed by di-n-butyl phthalate, which ranged from 4.05 to 1170 ng/m3 (median 63.3). The median inhalation exposure dose to phthalates was estimated at 0.845, 0.423, 0.203, 0.089, and 0.070 µg/kg-bw/d for infants, toddlers, children, teenagers, and adults, respectively. Inhalation is an important pathway of human exposure to DEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adibi J, Whyatt R, Camann D, Peki K, Jedrychowski W, Perera F (2002) Phthalate diester level in personal air samples during pregnancy in two urban pollutions. Indoor Air 4:177–182

    Google Scholar 

  • Antian J (1973) Toxicity and health threats phthalate esters: review of the literature. Environ Health Perspect 4:1–26

    Article  Google Scholar 

  • Bergh C, Torgrip R, Emenius G, Ostman C (2011) Organophosphate and phthalate esters in air and settled dust—a multi-location indoor study. Indoor Air 21:67–76

    Article  CAS  Google Scholar 

  • Bergh C, Luongo G, Wise S, Ostman C (2012) Organophosphate and phthalate esters in standard reference material 2585 organic contaminants in house dust. Anal Bioanal Chem 402:51–59

    Article  CAS  Google Scholar 

  • Blanchard O, Glorennec P, Mercier F, Bonvallot N, Chevrier C, Ramalho O et al (2014) Semi-volatile organic compounds in indoor air and settled dust in 30 French dwelling. Environ Sci Technol 48:3959–3969

    Article  CAS  Google Scholar 

  • Boberg J, Metzdorff S, Wortziger R, Axelstad M, Brokken L, Vinggaard AM et al (2008) Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats. Toxicology 250:75–81

    Article  CAS  Google Scholar 

  • Bornehag CG, Lundgren B, Weschler CJ, Sigsgaard T, Hagerhed-Engman L, Sundell J (2005) Phthalates in indoor dust and their association with building characteristics. Environ Health Perspect 113(10):1399–1404

    Article  CAS  Google Scholar 

  • Buck Louis GM, Peterson CM, Chen Z, Croughan M, Sundaram R, Stanford J et al (2013) Bisphenol A and phthalates and endometriosis: the endometriosis: natural history, diagnosis and outcomes study. Fertil Steril 100:162–169

    Article  CAS  Google Scholar 

  • Calafat AM, McKee RH (2006) Integrating biomonitoring exposure data into the risk assessment process: Phthalates [diethyl phthalate and di(2-ethylhexyl) phthalate] as a case study. Environ Health Perspect 114(11):1783–1789

    CAS  Google Scholar 

  • California Environmental Protection Agency (1994) How much air do we breathe? Brief report to the scientific and technical community. Available at: http://www.arb.ca.gov/research/resnotes/notes/94-11.htm. Accessed 14 Oct 2014

  • Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW et al (2010) Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ Health Perspect 118:1027–1032

    Article  CAS  Google Scholar 

  • Clark KE, David RM, Guinn R, Kramarz KW, Lampi MA, Staples CA (2011) Modeling human exposure to phthalate esters: a comparison of indirect and biomonitoring estimation methods. Human Ecol. Risk Assess 17:923–965

    Article  CAS  Google Scholar 

  • Clausen PA, Liu Z, Xu Y, Korfoed-Sørensen V, Little JC (2010) Influence of air flow rate on emission of DEHP from vinyl flooring in the emission cell FLEC: measurements and CFD simulation. Atmos Environ 44:2760–2766

    Article  CAS  Google Scholar 

  • Clausen PA, Liu Z, Kofoed-Søorensen V, Little J, Wolkoff P (2012) Influence of temperature on the emission of di-(2-ethylhexyl) phthalate (DEHP) from PVC flooring in the emission cell PLEC. Environ Sci Technol 46:909–915

    Article  CAS  Google Scholar 

  • Cousins AP, Holmgren T, Remberger M (2014) Emissions of two phthalate esters and BDE-209 to indoor air and their impact on urban air quality. Sci Total Environ 470–471:527–535

    Article  Google Scholar 

  • Engel SM, Miodovnik A, Canfield RL, Zhu C, Silva MJ, Calafat AM et al (2010) Prenatal phthalate exposure is associate with childhood behavior and executive functioning. Environ Health Perspect 118:565–571

    Article  CAS  Google Scholar 

  • Finizio A, Mackay A, Bidleman T, Harner T (1997) Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmos Environ 31:2289–2296

    Article  CAS  Google Scholar 

  • Fromme H, Lahrz T, Piloty M, Gebhart H, Oddoy A, Ruden H (2004) Occurrence of phthalate and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany). Indoor Air 14:188–195

    Article  CAS  Google Scholar 

  • Fromme H, Lahrz T, Hainsch A, Oddoy A, Piloty M, Rüden H (2005) Elemental carbon and respirable particulate matter in the indoor air of apartments and nursery schools and ambient air in Berlin (Germany). Indoor Air 15:335–341

    Article  CAS  Google Scholar 

  • Gaspar FW, Castorina R, Maddalena RL, Nishioka MG, McKone TE, Bradman A (2014) Phthalate exposure and risk assessment in California child care. Environ Sci Technol 48:7593–7601

    Article  CAS  Google Scholar 

  • Gray LE, Laskey J, Ostby J (2006) Chronic di-n-butyl phthalate exposure in rats reduces fertility and alters ovarian function during pregnancy in female long Evans hooded rats. Toxicol Sci 93(1):189–195

    Article  CAS  Google Scholar 

  • Guo Y, Kannan K (2011) Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ Sci Technol 45:3788–3794

    Article  CAS  Google Scholar 

  • Guo Y, Kannan K (2012) Challenges encountered in the analysis of phthalate esters in foodstuffs and other biological matrices. Anal Bioanal Chem 404(9):2539–2554

    Article  CAS  Google Scholar 

  • Guo Y, Kannan K (2013) A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ Sci Technol 47:14442–14449

    Article  CAS  Google Scholar 

  • Guo Y, Alomirah H, Cho HS, Minh TB, Mohd MA, Nakata H et al (2011a) Occurrence of phthalate metabolites in human urine from several Asian countries. Environ Sci Technol 45:3138–3144

    Article  CAS  Google Scholar 

  • Guo Y, Wu Q, Kannan K (2011b) Phthalate metabolites in urine from China, and implications for human exposures. Environ Int 37:893–898

    Article  CAS  Google Scholar 

  • Guo Y, Zhang Z, Liu L, Li Y, Ren N, Kannan K (2012) Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. J Agric Food Chem 60:6913–6919

    Article  CAS  Google Scholar 

  • Guo Y, Wang L, Kannan K (2014) Phthalates and parabens in personal care products from China: concentrations and human exposure. Arch Environ Contam Toxicol 66:113–119

    Article  CAS  Google Scholar 

  • Hauser R, Calafat AM (2005) Phthalates and human health. Occup Environ Med 62:806–818

    Article  CAS  Google Scholar 

  • Hubinger JC, Havery DC (2006) Analysis of consumer cosmetic products for phthalate esters. J Cosmet Sci 57:127–137

    CAS  Google Scholar 

  • Kanazawa A, Saito I, Araki A, Takeda M, Ma M, Saijo Y et al (2010) Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air 20:72–84

    Article  CAS  Google Scholar 

  • Kawamura Y, Nakajima A, Mutsuga M, Yamada T, Maitani T (2001) Residual chemical in silicone rubber products for food contact use. Shokuhin Eiseigaku Zasshi 2:316–321

    Article  Google Scholar 

  • Koniecki D, Wang R, Moody RP, Zhu J (2011) Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. Environ Res 111:329–336

    Article  CAS  Google Scholar 

  • Koo HJ, Lee BM (2005) Human monitoring of phthalates and risk assessment. J Toxicol Environ Health A 68(16):1379–1392

    Article  Google Scholar 

  • Kubwabo C, Rasmussen PE, Fan X, Kosarac I, Wu F, Zidek A et al (2013) Analysis of selected phthalates in Canadian indoor dust collected using household vacuum and standardized sampling techniques. Indoor Air 23:506–514

    Article  CAS  Google Scholar 

  • Liang Y, Xu Y (2014) Emission of phthalates and phthalate alternatives from vinyl flooring and crib mattress covers: the influence of temperature. Environ Sci Technol 48:14228–14237

    Article  CAS  Google Scholar 

  • Liang Y, Xu Y (2015) The influence of surface sorption and air flow rate on phthalate emissions from vinyl flooring: measurement and modeling. Atmos Environ 103:147–155

    Article  CAS  Google Scholar 

  • Lin S, Ku HY, Su PH, Chen JW, Huang PC, Angerer J et al (2011) Phthalate exposure in pregnant women and their children in central Taiwan. Chemosphere 82:947–955

    Article  CAS  Google Scholar 

  • Pei XQ, Song M, Guo M, Mo FF, Shen XY (2013) Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments. Atmos Environ 68:17–23

    Article  CAS  Google Scholar 

  • Rudel RA, Perovich LJ (2009) Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ 43:170–181

    Article  CAS  Google Scholar 

  • Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG (2003) Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol 37(20):4543–4553

    Article  CAS  Google Scholar 

  • Schecter A, Lorber M, Guo Y, Wu Q, Yun SH, Kannan K et al (2013) Phthalate concentrations and dietary exposure from food purchased in New York state. Environ Health Perspect 121:473–479

    Google Scholar 

  • Schossler P, Schripp T, Salthammer T, Bahadir M (2011) Beyond phthalates: Gas phase concentration and modeled gas/particle distribution of modern plasticizers. Sci Total Environ 409:4031–4038

    CAS  Google Scholar 

  • Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2008) Child-specific exposure factors handbook (final report). Available at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=199243

  • United States Environmental Protection Agency (2012a) Butyl benzyl phthalate (CASRN 85-68-7). Available at: http://www.epa.gov/iris/subst/0293.htm. Accessed 26 Nov 2012

  • United States Environmental Protection Agency (2012b) Dibutyl phthalate (CASRN 84-74-2). Available at: http://www.epa.gov/iris/subst/0038.htm. Accessed 15 Mar 2012

  • United States Environmental Protection Agency (2012c) Di(2-ethylhexyl)phthalate (DEHP) (CARSN 117-81-7). Available at: http://www.epa.gov/iris/subst/0014.htm. Accessed 15 Mar 2012

  • United States Environmental Protection Agency (2012d) Diethyl phthalate (CASRN 84-66-2). Available at: http://www.epa.gov/iris/subst/0226.htm Accessed 15 Mar 2012

  • Weschler CJ, Nazaroff WW (2010) SVOC partitioning between the gas phase and settled dust indoors. Atmos Environ 44:3609–3620

    Article  CAS  Google Scholar 

  • Weschler CJ, Salthammer T, Fromme H (2008) Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments. Atmos Environ 42:1449–1460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurunthachalam Kannan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.M., Kannan, K. Occurrence of Phthalate Diesters in Particulate and Vapor Phases in Indoor Air and Implications for Human Exposure in Albany, New York, USA. Arch Environ Contam Toxicol 68, 489–499 (2015). https://doi.org/10.1007/s00244-015-0140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-015-0140-0

Keywords

Navigation