Skip to main content
Log in

Sediment Toxicity and Bioaccumulation Assessment in Abandoned Copper and Mercury Mining Areas of the Nalón River Basin (Spain)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Sediment toxicity and metal bioaccumulation were assessed at sites affected by historical copper (Cu) and mercury (Hg) mining activities in the Nalón River basin, Asturias, Spain. Toxicity assessment of stream sediments was based on a 28-day oligochaete Tubifex tubifex sediment bioassay, which allowed the classification of sites into three levels of toxicity: 11 sites were classified as nontoxic (including Cu mine sites), three sites as potentially toxic, and seven sites as toxic (all located in Hg mine districts). The greatest levels of arsenic (As), chromium, Hg, lead (Pb), and zinc (Zn) in T. tubifex were measured at sites affected by Hg mining and the highest Cu levels in tissues at Cu mining sites. Chronic toxicity responses were best explained by As and Hg sediment concentrations and by As, Pb, and Zn tissue residues. Residue levels of As, Hg, Zn, and Pb were successfully used to predict sediment chronic toxicity and estimate effective tissue residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Society for Testing and Materials (2005) Standard test method for measuring the toxicity of sediments-associated contaminants with freshwater invertebrates. ASTM E1706-05. ATSM, Philadelphia

  • AQEM Consortium (2002) Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates. Developed for the purpose of the Water Framework Directive. Version 1.0, February 2002

  • Borgmann U, Norwood WP, Reynoldson TB, Rosa F (2001) Identifying cause in sediment assessments: bioavailability and the sediment quality triad. Can J Fish Aquat Sci 58:950–960

    Article  CAS  Google Scholar 

  • Bouché ML, Habets F, Biagianti-Risbourg S, Vernet G (2000) Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicol Environ Saf 46(3):246–251

    Article  Google Scholar 

  • Bryan GW, Langston WJ, Hummer-Stone LG, Burt GR (1985) A guide to the assessment of heavy metal contamination in estuaries using biological indicators. J Mar Biol Ass UK Occasional Publication No. 4

  • Burton GA Jr, Batley GE, Chapman PM, Forbes VE, Smith EP, Reynoldson TB et al (2002) A weight-of-evidence framework for assessing sediment (or other) contamination: improving certainty in the decision-making process. Hum Ecol Risk Assess 8:1675–1696

    Article  Google Scholar 

  • Byrne P, Wood PJ, Reid I (2012) The impairment of river systems by metal mine contamination: a review including remediation options. Crit Rev Environ Sci Technol 42(19):2017–2077

    Article  CAS  Google Scholar 

  • Cammuso M, Polesello S, Valsecchi S, Vignati DAL (2012) Importance of dietary uptake of trace elements in the benthic deposit-feeding Lumbriculus variegatus. Trends Anal Chem 36:103–112

    Article  Google Scholar 

  • Carère M, Dulio V, Hanke G, Polesello S (2012) Guidance for sediment and biota monitoring under the common implementation strategy for the Water Framework Directive. Trend Anal Chem 36:15–24

    Article  Google Scholar 

  • Casado-Martínez MC, Smith BD, Luoma SN, Rainbow PS (2010) Metal toxicity in sediment-dwelling polychaete: threshold body concentrations or overwhelming accumulation rates? Environ Pollut 158:3071–3076

    Article  Google Scholar 

  • Casado-Martínez MC, Duncan E, Smith BD, Maher WA, Rainbow PS (2012) Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism. Ecotoxicology 21:576–590

    Article  Google Scholar 

  • Chapman PM (2001) Utility and relevance of aquatic oligochaetes in ecological risk assessment. Hydrobiologia 463:149–169

    Article  Google Scholar 

  • Chapman PM, McDonald BG (2005) Using the sediment quality triad (SQT) in ecological risk assessment. In: Blaise C, Férard JF (eds) Small-scale freshwater toxicity investigations, vol 2, 1st edn. Kluwer Academic, Norwell, pp 305–329

    Chapter  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Gorley R (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clements WH (1994) Integrated laboratory and field approach for assessing impacts of heavy metals at the Arkansas River, Colorado. Environ Toxicol Chem 13:397–404

    Article  CAS  Google Scholar 

  • Crommentuijn T, Polder M, van de Plassche E (1997) Maximum permissible concentrations and negligible concentrations for metals, taking background concentrations into account [RIVM Report 601501 001]. National Institute of Public Health and the Environment, Bilthoven, Netherlands. Available at: http://www.rivm.nl/bibliotheek/rapporten/601501001.html. Accessed 3 Nov 2014

  • Dawson TD, Lott KG, Leonard EN, Mount D (2003) Time course of metal loss in Lumbriculus variegatus following sediment exposure. Environ Toxicol Chem 22:886–889

    Article  CAS  Google Scholar 

  • Day KE, Kirby RS, Reynoldson TB (1995) The effect of manipulation of freshwater sediments on responses of benthic invertebrates in whole-sediment toxicity tests. Environ Toxicol Chem 14:1333–1343

    Article  CAS  Google Scholar 

  • De Blas Cortina MA (1996) La primera minería metálica del N. Penínsular: Las indicaciones del C-14 y la cronología prehistórica de las explotaciones cupriferas del Áramo y El Milagro. Comphaun Extra 6(I):217–226

  • De Blas Cortina MA, Suárez Fernández M (2009) Investigaciones arqueológicas de 2005 y 2006 en las minas de cobre prehistóricas de la sierra del Aramo, Texéu (Riosa). Excavaciones arqueológicas en Asturias 2003–2006. Consejería de Cultura y Turismo del Gobierno del Principado de Asturias

  • De Cooman W, Florus M, Vangheluwe ML, Janssen CR, Heylen S, DePauw N et al. (1999) Sediment characterisation of rivers in Flanders. The triad approach. In: Proceedings of CATS 4: Characterisation and treatment of sediments, 15–17 September, Antwerp, Netherlands, pp 351–367

  • De Jonge M, Dreesen F, De Paepe J, Blust R, Bervoets L (2009) Do acid volatile sulfides (AVS) influence the accumulation of sediment bound metals to benthic invertebrates under natural field conditions? Environ Sci Technol 43:4510–4516

    Article  Google Scholar 

  • De Jonge M, Blust R, Bervoets L (2010) The relation between acid volatile sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behaviour and ecology. Environ Pollut 158:1381–1391

    Article  Google Scholar 

  • De Jonge M, Eyckmans M, Blust R, Bervoets L (2011) Are accumulated sulfide-bound metals metabolically available in the benthic oligochaete Tubifex tubifex? Environ Sci Technol 45:3131–3137

    Article  Google Scholar 

  • De Jonge M, Teuchies J, Meire P, Blust R, Bervoets L (2012) The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability. Water Res 46(10):3387–3397

    Article  Google Scholar 

  • De Jonge M, Tipping E, Lofts S, Bervoets L, Blust R (2013) The use of invertebrate body burdens to predict ecological effects of metal mixtures in mining-impacted waters. Aquat Toxicol 142:294–302

    Article  Google Scholar 

  • den Besten P, Deckere E, Babut MP, Power B, DelValls TA, Zago C, Oen AMP, Heise S (2003) Biological effects-based sediment quality in ecological risk assessment for European waters. J Soil Sediments 3:144–162

    Article  Google Scholar 

  • Eisler R (2000) Handbook of chemical risk assessment. Health hazard to humans, plants and animals, vol 1. Lewis, Boca Raton

    Book  Google Scholar 

  • EC, European Commission (2000) Directive 2000/60/CE of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. L327/1 (22.12.2000). Official Journal of the European Union

  • EC, European Commission (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/CEE, 84/491/CEE and 86/280/CEE and amending Directive 2000/60/EC of the European Parliament and of the Council. L 348/84 (24.12.2008). Official Journal of the European Union

  • EC, European Commission (2010) WFD-CIS Guidance Document No. 25. Guidance on chemical monitoring of sediment and biota under the Water Framework Directive. Office for Official Publications of the European Communities, Luxembourg

  • Gillis PL, Diener LC, Reynoldson TB, Dixon DG (2002) Cadmium induced production of a metallothionein-like protein in Tubifex tubifex (Oligochaeta) and Chironomus riparius (Diptera): correlation with whole body (reproduction and growth) endpoints of toxicity. Environ Toxicol Chem 21:1836–1844

    Article  CAS  Google Scholar 

  • Gillis PL, Reynoldson TB, Dixon DG (2006) Metallothionein-like protein and tissue metal concentrations in invertebrates (oligochaetes and chironomids) collected from reference and metal contaminated field sediments. J Great Lakes Res 32:565–577

    Article  CAS  Google Scholar 

  • Grapentine L, Anderson J, Boyd D, Burton GA, DeBarros C, Johnson G et al (2002) A decision making framework for sediment assessment development for the Great Lakes. Hum Ecol Risk Assess 8:1641–1655

    Article  Google Scholar 

  • Gust KA, Fleeger JW (2005) Exposure-related effects on Cd bioaccumulation explain toxicity of Cd-phenanthrene mixtures in Hyalella azteca. Environ Toxicol Chem 24:2918–2926

    Article  CAS  Google Scholar 

  • Hernández M, Rovira JV, Antonio MT (1988) Relationship between Cu and Pb levels in sediments and dwelling tubificidae in Jarama River (Madrid, Spain). In: Austrc M, Lester JN (eds) Heavy metals in the hydrological cycle. Selper, London, pp 531–538

    Google Scholar 

  • Hollert H, Heise S, Pudenz S, Brüggemann R, Ahlf W, Braunbeck T (2002) Application of a sediment quality triad and different statistical approaches (Hasse diagrams and fuzzy logic) for the comparative evaluation of small streams. Ecotoxicology 11:311–321

    Article  CAS  Google Scholar 

  • Kaiser M, Irmer U, Weiler K (1989) Monitoring water quality: seasonal variation of heavy metals in sediments, suspended particulate water and tubificids of the Elba River. Environ Technol Lett 10:845–855

    Article  CAS  Google Scholar 

  • Klerks PL, Bartholomew PR (1991) Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeistieri. Aquat Toxicol 19:97–112

    Article  CAS  Google Scholar 

  • Krantzberg G, Reynoldson T, Jaagumagi R, Painter S, Boyd D, Bedard D et al (2000) SEDS: setting environmental decisions for sediment management. Aquat Ecosyst Health 3:387–396

    Article  Google Scholar 

  • Loredo J, Pereira A, Ordóñez A (2003) Untreated abandoned mercury mining works in a scenic area of Asturias (Spain). Environ Int 29:481–491

    Article  CAS  Google Scholar 

  • Loredo J, Álvarez R, Ordóñez A (2005) Release of toxic metals and metalloids from Los Rueldos mercury mine (Asturias, Spain). Sci Total Environ 340:247–260

    Article  CAS  Google Scholar 

  • Loredo J, Ordóñez A, Álvarez R (2006) Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury-mining area (Asturias, Spain). J Hazard Mater 136:455–467

    Article  CAS  Google Scholar 

  • Loredo J, Álvarez R, Ordóñez A, Bros T (2007) Mineralogy and geochemistry of the Texeo Cu–Co mine site (NW Spain): screening tools for environmental assessment. Environ Geol 55:1299–1310

    Article  Google Scholar 

  • Loredo J, Petit-Domínguez MD, Ordoñez A, Galán MP, Fernández-Martínez R, Alvarez R et al (2010) Surface water monitoring in the mercury mining district of Asturias (Spain). J Hazard Mater 176:323–332

    Article  CAS  Google Scholar 

  • Luoma SN, Cain DJ, Rainbow PS (2010) Calibrating biomonitors to ecological disturbance: a new technique for explaining metal effects in natural waters. Integr Environ Assess Manag 6(2):199–209

    CAS  Google Scholar 

  • Lyytikäinen M, Sormunen A, Peräniemi S, Kukkonen JVK (2001) Environmental fate and bioavailability of wood preservatives in freshwater sediments near and old sawmill site. Chemosphere 44:341–350

    Article  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Maestre Z, Martinez-Madrid M, Rodriguez P, Reynoldson T (2007) Ecotoxicity assessment of river sediments and a critical evaluation of some of the procedures used in the aquatic oligochaete Tubifex tubifex chronic bioassay. Arch Environ Contam Toxicol 53:559–570

    Article  CAS  Google Scholar 

  • Maestre Z, Rodriguez P, Martinez-Madrid M (2009) Application of the sediment quality TRIAD to rivers in northern Spain. In: Santos EB (ed) Ecotoxicology research development. Nova Science, New York, pp 205–224

    Google Scholar 

  • Martinez-Madrid M, Rodriguez P, Pérez-Iglesias JI, Navarro E (1999) Sediment toxicity bioassays for assessment of contaminated sites in the Nervión River (Northern Spain). 2. Tubifex tubifex reproduction sediment bioassay. Ecotoxicology 8:111–124

  • Meador JP, Adams WJ, Escher BI, McCarty LS, McElroy AE, Sappington KG (2011) The tissue residue approach for toxicity assessment: findings and critical reviews from a Society of Environmental Toxicology and Chemistry Pellston Workshop. Integr Environ Assess Manag 7(1):2–6

    Article  CAS  Google Scholar 

  • Méndez-Fernández L (2013) Metal toxicity and bioaccumulation in Tubifex tubifex (Müller) (Annelida) exposed to river sediments from Northern Spain. Dissertation, University of Basque Country, Bilbao, Spain

  • Méndez-Fernández L, Martínez-Madrid M, Rodriguez P (2013) Toxicity and critical body residues of Cd, Cu and Cr in the aquatic oligochaete Tubifex tubifex (Müller) based on lethal and sublethal effects. Ecotoxicology 22(10):1445–1460

    Article  Google Scholar 

  • Mudroch A, Azcue JM (1995) Manual of aquatic sediment sampling. Lewis, Boca Raton

    Google Scholar 

  • Organization for Economic Co-operation and Development (2008) Guidelines for testing of chemicals no. 315: bioaccumulation in Sediment-dwelling benthic oligochaetes. OECD, Paris

    Google Scholar 

  • Protano C, Zinnà L, Giampaoli S, Romano-Spica V, Chiavarini S, Vitali M (2014) Heavy metal pollution and potential ecological risks in rivers: a case study from southern Italy. Bull Environ Contam Toxicol 92:75–80

    Article  CAS  Google Scholar 

  • Rainbow PS, Hildrew AG, Smith BD, Geatches T, Luoma SN (2012) Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos. Environ Pollut 166:196–207

    Article  CAS  Google Scholar 

  • Reynoldson TB, Thompson SP, Bampsey JL (1991) A sediment bioassay using the tubificid oligochaete worm Tubifex tubifex. Environ Toxicol Chem 10:1061–1072

    Article  CAS  Google Scholar 

  • Reynoldson TB, Day KE, Clarke C, Milani D (1994) Effects of indigenous animals on chronic endpoints in freshwater sediment toxicity tests. Environ Toxicol Chem 13:973–977

    Article  CAS  Google Scholar 

  • Reynoldson TB, Bailey RC, Day KE, Norris RH (1995) Biological guidelines for freshwater sediment based on BEnthic Assessment of Sediment (the BEAST) using a multivariante approach for predicting biological state. Aust J Ecol 20:198–219

    Article  Google Scholar 

  • Reynoldson TB, Rodriguez P, Martinez-Madrid M (1996) A comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Müller, 1774) from the North American Great Lakes and Northern Spain. Hydrobiologia 334(1–3):199–206

    Article  Google Scholar 

  • Reynoldson TB, Norris RH, Resh VH, Day KE, Rosenberg DM (1997) The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J N Am Benthol Soc 16:833–852

    Article  Google Scholar 

  • Riba I, Forja JM, Gómez-Parra A, DelValls TA (2004) Sediment quality in littoral regions of the Gulf of Cádiz: a triad approach to address the influence of mining activities. Environ Pollut 132:341–353

    Article  CAS  Google Scholar 

  • Ritz C, Streibeig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22

    Google Scholar 

  • Rodriguez P, Reynoldson TB (2011) The pollution biology of aquatic oligochaetes. Springer, Dordrecht

    Book  Google Scholar 

  • Rodriguez P, Maestre Z, Martinez-Madrid M, Reynoldson TB (2011) Evaluating the type II error rate in a sediment toxicity classification using the reference condition approach. Aquat Toxicol 101:207–213

    Article  CAS  Google Scholar 

  • Rodríguez-Terente LM, Luque-Caval C, Gutiérrez-Claverol M (2006) Los resgistros mineros para sustancias metálicas en Asturias. Trabajos de Geología, Universidad de Oviedo 26:19–55

  • Rosen G, Lotufo GR (2005) Toxicity and fate of two munitions constituents in spiked sediment exposures with the marine amphipod Eohaustorius estuaries. Environ Toxicol Chem 24:2887–2897

    Article  CAS  Google Scholar 

  • Say PJ, Giani N (1981) The Riou Mort, a tributary to the river Lot polluted by heavy metals. II. Accumulation of zinc by oligochaetes and chironomids. Acta Oecol 2:339–355

    CAS  Google Scholar 

  • Singh RK, Chavan SL, Sapkale PH (2007) Heavy metal concentrations in water, sediments and body tissues of red worms (Tubifex spp.) collected from natural habitats in Mumbai, India. Environ Monit Assess 129:471–481

    Article  CAS  Google Scholar 

  • Solá C, Burgos M, Plazuelo A, Toja J, Plans M, Prat N (2004) Heavy metal bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage an accidental spell (Guadiamar River, SW Spain). Sci Total Environ 333:109–126

    Article  Google Scholar 

  • Steen-Redeker E, Bervoets L, Blust R (2004) Dynamic model for the accumulation of cadmium and zinc from water and sediment by the aquatic oligochaete Tubifex tubifex. Environ Sci Technol 38(23):6193–6200

    Article  Google Scholar 

  • Sturmbauer C, Opadiya GB, Niederstätter H, Riedmann A, Dallinger R (1999) Mitochondrial DNA reveals cryptic oligochaete species differing in cadmium resistance. Mol Biol Evol 16(7):967–974

    Article  CAS  Google Scholar 

  • Teruggi ME (1982) Diccionario sedimentológico. Volúmen I. Rocas Clásticas y Piroclásticas. Ed. Cient. Arg. (LIBRART). Buenos Aires

  • United States Environmental Protection Agency (1990) Macroinvertebrate field and laboratory methods for evaluating the biological integrity of surface waters. Selection of sampling stations. EPA 600/4-90/030

  • Winger PV, Laiser PJ, White DH, Seginal JT (2000) Effects of contaminants in dredge material from the lower Savannah River. Arch Environ Contam Toxicol 38:128–136

    Article  CAS  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall, Upper Saddle River, pp 226–227

    Google Scholar 

  • Zuur AF, Ieno EN, Smith GM (2007) Analyzing ecological data. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This work was possible thanks to the support from the Education and Science Ministry research project (MEC CGL2008-04502/BOS) and from the Basque Government (IT-405-10). L. Méndez-Fernández was assisted in this work by a doctoral grant from the Basque Government. We gratefully acknowledge Dr. Ordóñez for help identifying metal mines location in Asturias and Dr. Miranda for providing information on surveillance nets. Our thanks also go to B. Arce from Analytical Services of Sosprocan Unit (University of Cantabria) for technical and human support provided. We thank Keith Somers of the Ontario Department of Environment (Canada) for providing the Excel macro for constructing the ellipses and also P. Markaide for the valuable contribution on the custom made R script for dose–response model analysis. We also gratefully acknowledge the anonymous reviewers who helped to improve the manuscript with useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Méndez-Fernández.

Appendix

Appendix

See Figs. 4, 5 and Tables 5, 6, and 7 in Appendix.

Fig. 4
figure 4

Map of study area in Nalón River basin (a) with detailed map of mining areas in Riosa and Pola de Lena (b) and Mieres (c). N1r, N2r, N18r and N22r are reference sites from Water Authorities surveillance nets

Fig. 5
figure 5

PCA ordination after Varimax rotation of 25 sites in the Nalon River basin. Each site is marked by a symbol corresponding to four different anthropogenic pressure types

Table 5 River water and sediment physical–chemical characteristics
Table 6 Variable loadings on each principal components (PC) (bivariate correlations between the observed variables and the first two PCs
Table 7 Spearman´s rank correlation values (ρ) between nMDS axes (MDS1 and MDS2) and metal levels in sediment and tissue residues, used as vectors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Fernández, L., Rodríguez, P. & Martínez-Madrid, M. Sediment Toxicity and Bioaccumulation Assessment in Abandoned Copper and Mercury Mining Areas of the Nalón River Basin (Spain). Arch Environ Contam Toxicol 68, 107–123 (2015). https://doi.org/10.1007/s00244-014-0093-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0093-8

Keywords

Navigation