Skip to main content
Log in

Metals and Metallothioneins in Morelet’s Crocodile (Crocodylus moreletii) from a Transboundary River Between Mexico and Belize

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine concentrations of heavy metals (cadmium [Cd] and mercury [Hg]) and metallothioneins (MTs) in blood plasma and caudal scutes of Morelet’s crocodile (Crocodylus moreletii) from Rio Hondo, a river and natural border between Mexico and Belize. Three transects of the river (approximately 20 km each) were surveyed in September 2012 and April 2013, and samples were collected from 24 crocodiles from these areas. In blood plasma, Cd (7.6 ± 9.6 ng/ml) was detected in 69 % of samples (n = 9); Hg (12.2 ± 9.2 ng/ml) was detected in 46 % of samples (n = 6); and MTs (10,900 ± 9,400 ng/ml) were detected in 92 % of samples (n = 12). In caudal scutes samples, Cd (31.7 ± 39.4 ng/g) was detected in 84 % of samples (n = 12) and Hg (374.1 ± 429.4 ng/g) in 83 % of samples (n = 20). No MTs were detected in caudal scutes. Hg concentrations in scutes from the Rio Hondo were 2- to 5-fold greater than those previously reported in scutes from other localities in northern Belize. In blood plasma, a significant positive relationship between Hg and body size was observed. Mean concentrations of Cd and MTs in size classes suggest that MTs may be related to Cd exposure. This is the first report of MT presence in crocodile blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almli B, Mwase M, Sivertsen T, Musonda MM, Flåøyen A (2005) Hepatic and renal concentrations of 10 trace elements in crocodiles (Crocodylus niloticus) in the Kafue and Luangwa rivers in Zambia. Sci Total Environ 337:75–82

    Article  CAS  Google Scholar 

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76(2):160–202

    Article  CAS  Google Scholar 

  • Andreani G, Santoro M, Cottignoli S, Fabbri M, Carpenè E, Isani G (2008) Metal distribution and metallothionein in loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles. Sci Total Environ 390:287–294

    Article  CAS  Google Scholar 

  • Bell JU, Lopez JM (1985) Isolation and partial characterization of a cadmium binding protein from the liver of alligators exposed to cadmium. Comp Biochem Physiol C 82(1):123–128

    Article  CAS  Google Scholar 

  • Bienengräber M, Forderkunz S, Klein D, Summer KH (1995) Determination of Cu-containing metallothionein: comparison of Ag saturation assay, thiomolybdate assay, and enzyme-linked immunosorbent assay. Anal Biochem 228(1):69–73

    Article  Google Scholar 

  • Brisbin Jr IL, Jagoe CH, Gaines KF, Gariboldi JC (1998) Environmental contaminants as concerns for the conservation biology of crocodilians. In: Proceedings of the 14th Working meeting of the Crocodile Specialist Group of the SSC of the IUCN—The World Conservation Union, Gland, Switzerland, pp 155–173

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76(2):89–131

    Article  CAS  Google Scholar 

  • Buenfil-Rojas M, Flores-Cuevas N (2007) Determinación de metales pesados (As, Cd, Hg y Pb) presentes en el Río Hondo, Quintana Roo. In: VI Congreso Internacional y XII Nacional de Ciencias Ambientales Chihuahua, Mexico, pp 435–439

  • Burger J, Gochfeld M, Rooney AA, Orlando EF, Woodward AR, Guillette LJ (2000) Metals and metalloids in tissues of American alligators in three Florida lakes. Arch Environ Contam Toxicol 38:501–508

    Article  CAS  Google Scholar 

  • Burger J, Campbell KR, Campbell TS, Shukla T, Jeitner C, Gochfeld M (2005) Use of skin and blood as nonlethal indicators of heavy metal contamination in northern water snakes (Nerodia sipedon). Arch Environ Contam Toxicol 49(2):232–238

    Article  CAS  Google Scholar 

  • Campbell KR (2003) Ecotoxicology of crocodilians. Appl Herpetol 1:45–163

    Article  Google Scholar 

  • Campbell JW, Waters MN, Tarter A, Jackson J (2010) Heavy metal and selenium concentrations in liver tissue from wild American alligator (Alligator mississippiensis) livers near Charleston, South Carolina. J Wildl Dis 46(4):1234–1241

    Article  CAS  Google Scholar 

  • Cedeño-Vázquez JR, Ross JP, Calmé S (2006) Population status and distribution of Crocodylus acutus and C. moreletii in southeastern Quintana Roo, Mexico. Herpetol. Nat Hist 10(1):17–30

    Google Scholar 

  • Cedeño-Vázquez JR, González-Ávila F, Castro-Pérez J (2011) Condición corporal del cocodrilo de pantano (Crocodylus moreletii) en el Rio Hondo, Quintana Roo, Mexico. Quehacer Científico en Chiapas 1(11):19–26

    Google Scholar 

  • Chan HM, Satoh M, Zalups RK, Cherian MG (1992) Exogenous metallothionein and renal toxicity of cadmium and mercury in rats. Toxicology 76(1):15–26

    Article  CAS  Google Scholar 

  • Comisión Nacional del Agua (2012) Atlas digital de agua México. Sistema Nacional de Información del Agua. Subdirección Técnica, CONAGUA. http://www.conagua.gob.mx/atlas/ciclo20.html. Accessed 08 April 2014

  • Deb SC, Fukushima T (1999) Metals in aquatic ecosystems: Mechanisms of uptake, accumulation and release-ecotoxicological. Int J Environ Stud 56:385–417

    Article  CAS  Google Scholar 

  • Defew LH, Mair JM, Guzman HM (2005) An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Mar Pollut Bull 50(5):547–552

    Article  CAS  Google Scholar 

  • Delany MF, Bell JU, Sundlof SF (1988) Concentrations of contaminants in muscle of the American alligator in Florida. J Wildl Dis 24(1):62–66

    Article  CAS  Google Scholar 

  • Dobrovoljc K, Falnoga I, Žnidarič MT, Mazej D, Ščančar J, Bulog B (2012) Cd, Cu, Zn, Se, and metallothioneins in two amphibians, Necturus maculosus (Amphibia, Caudata) and Bufo bufo (Amphibia, Anura). Biol Trace Elem Res 150(1–3):178–194

    Article  Google Scholar 

  • Euan-Avila JI, Liceaga-Correa MA, Rodriguez-Sanchez H (2002) Caracterización de fuentes no puntuales de contaminación agrícola en el municipio de Othón P. Blanco en Quintana Roo y su potencial influencia en la Bahía de Chetumal. In: Rosado-May FJ, Romero-Mayo R, De-Jesús-Navarrete A (eds) Contribuciones de la ciencia al manejo costero integrado de la Bahía de Chetumal y su área de influencia. UQROO, Chetumal, Quintana Roo, pp 197–204

    Google Scholar 

  • Fingerman M, Devi M, Reddy PS, Katyayani R (1996) Impact of heavy metal exposure on the nervous system and endocrine-mediated processes in crustaceans. Zool Stud 35(1):1–8

    CAS  Google Scholar 

  • Garcia-Rios V, Gold-Bouchot G (2003) Trace metals in sediments from Bahia de Chetumal, Mexico. Bull Environ Contam Toxicol 70(6):1228–1234

    Article  CAS  Google Scholar 

  • Guillette LJ Jr, Crain DA, Gunderson MP, Kools SAE, Milnes MR, Orlando EF et al (2000) Alligators and endocrine disrupting contaminants: a current perspective. Am Zool 40:438–452

    Article  CAS  Google Scholar 

  • Heaton-Jones TG, Homer BL, Heaton-Jones DL, Sundlof SF (1997) Mercury distribution in American alligators (Alligator mississippiensis) in Florida. J Zoo Wildl Med 28(1):62–70

    CAS  Google Scholar 

  • Hidalgo J, Chung R, Penkowa M, Vašák M (2009) Structure and function of vertebrate metallothioneins. In: Sigel A, Sigel H, Sigel RKO (eds) Metallothioneins and related chelators. Metal ions in life science, vol 5. Royal Society of Chemistry, Cambridge, pp 279–317

  • Jagoe CH, Arnold-Hill B, Yanochko GM, Winger PV, Brisbin IL Jr (1998) Mercury in alligators (Alligator mississippiensis) in the southeastern United States. Sci Total Environ 213(1):255–262

    Article  CAS  Google Scholar 

  • Jeffree RA, Markich SJ, Twining JR (2001) Element concentrations in the flesh and osteoderms of estuarine crocodiles (Crocodylus porosus) from the Alligator Rivers region, northern Australia: Biotic and geographic effects. Arch Environ Contam Toxicol 40:236–245

    Article  CAS  Google Scholar 

  • Jeffree RA, Markich SJ, Tucker AD (2005) Patterns of metal accumulation in osteoderms of the Australian freshwater crocodile, Crocodylus johnstoni. Sci Total Environ 336:71–80

    Article  CAS  Google Scholar 

  • Lance VA, Horn TR, Elsey RM, de Peyster A (2006) Chronic incidental lead ingestion in a group of captive reared alligators (Alligator mississippiensis): possible contribution to reproductive failure. Comp Biochem Physiol C 142:30–35

    Google Scholar 

  • Lehner AF, Rumbeiha W, Shlosberg A, Stuart K, Johnson M et al (2013) Diagnostic analysis of veterinary dried blood spots for toxic heavy metals exposure. J Anal Toxicol 37(7):406–422

    Article  CAS  Google Scholar 

  • Magnon Basnier C (2002) El río Hondo como componente hidrológico de la Bahía de Chetumal y como corredor biológico compartido amenazado. In: Rosado-May FJ, Romero-Mayo R, De Jesús-Navarrete A (eds) Contribuciones de la ciencia al manejo costero integrado de la Bahía de Chetumal y su área de influencia. UQROO, Chetumal, Quintana Roo, pp 23–32

    Google Scholar 

  • Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79:4813–4814

    Article  CAS  Google Scholar 

  • Messel H, Vorlicek GC, Wells AC, Green WJ (1981) Surveys of tidal rivers systems in the Northern Territory of Australia and their crocodile populations. Monograph No 1. Pergamon, Sidney, Australia

  • Nordberg M, Nordberg G (2009) Metallothioneins: Historical development and overview. Metal ions in life sciences, vol 5. Royal Society of Chemistry, Cambridge, pp 1–29

    Google Scholar 

  • Odierna E (1995) The occurrence of lead in Brazilian caiman as determined by atomic absorption spectrometry: a potential ecological disaster. Dissertation, Manhattan College, USA

  • Ortiz-Cervantes A, Rubio-Lozano R (2012) Reptiles. Características generales, biología y diversidad de especies. In: Curso de cría, mantenimiento y patología de animales exóticos. University of Murcia, Spain, pp 27–30

  • Perry EF, Koirtyohann SR, Perry HM Jr (1975) Determination of cadmium in blood and urine by graphite furnace atomic absorption spectrophotometry. Clin Chem 21(4):626–629

    CAS  Google Scholar 

  • Peters LJ (1983) Mercury accumulation in the American alligator. Dissertation, University of Florida

  • Platt S, Rainwater T, Finger A, Thorbjarnarson JB, Anderson T, McMurry S (2006) Food habits, ontogenetic dietary partitioning and observations of foraging behaviour of Morelet’s crocodile (Crocodylus moreletii) in Northern Belize. Herpetol J 16:281–290

    Google Scholar 

  • Rainwater TR, Adair BM, Platt SG, Anderson TA, Cobb GP, McMurry ST (2002) Mercury in Morelet’s crocodile eggs from Northern Belize. Arch Environ Contam Toxicol 324(1):319–324

    Article  Google Scholar 

  • Rainwater TR, Reynolds KD, Cañas JE, Cobb GP, Anderson TA, McMurry ST et al (2005) Organochlorine pesticides and mercury in cottonmouths (Agkistrodon piscivorus) from northeastern Texas, USA. Environ Toxicol Chem 24(3):665–673

    Article  CAS  Google Scholar 

  • Rainwater TR, Wu TH, Finger AG, Cañas JE, Yu L, Reynolds KD et al (2007) Metals and organochlorine pesticides in caudal scutes of crocodiles from Belize and Costa Rica. Sci Total Environ 373(1):146–156

    Article  CAS  Google Scholar 

  • Sánchez-Herrera O, Lopez-Segurajauregui G, Garcia-Naranjo-Ortiz de la Huerta A, Benitez-Diaz H (2011) Programa de Monitoreo del Cocodrilo de Pantano (Crocodylus moreletii) México Belice-Guatemala, CONABIO

  • Sanchez-Rodriguez LH (2009) Comparación de dos métodos de determinación de mercurio total en cabello por espectroscopías de absorción atómica con generador de hidruros y diferencial de efecto zeeman con pirolizador. Dissertation, National University of Colombia

  • Santucci B, Amantea A, Giuliano MC, Valenzano C, Cristaudo A (2000) Expression of metallothioneins-I and -II isoforms at positive patch-test sites. Contact Dermatitis 43:103–106

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Cherian MG (1991) Quantification of metallothionein by silver saturation. Methods Enzymol 205:78–83

    Article  CAS  Google Scholar 

  • Schneider L, Pacheco-Peleja R, Kluczkovski A Jr, Martinez-Freire G, Marioni B, Vogt RC et al (2012) Mercury concentration in the spectacled caiman and black caiman (Alligatoridae) of the Amazon: implications for human health. Arch Environ Contam Toxicol 63:270–279

    Article  CAS  Google Scholar 

  • Schneider L, Maher W, Green A, Vogt RC (2013) Mercury contamination in reptiles: an emerging problem with consequences for wild life and human health. In: Kim KH, Brown RJC (eds) Mercury: sources, applications and health impacts. Nova Science Publishers, Hauppauge, NY, pp 173–232

  • Shaikh ZA, Hirayama K (1979) Metallothionein in the extracellular fluids as an index of cadmium toxicity. Environ Health Perspect 28:267–271

    Article  CAS  Google Scholar 

  • Shaikh ZA, Smith LM (1984) Biological indicators of cadmium exposure and toxicity. Experientia 40(1):36–43

    Article  CAS  Google Scholar 

  • Sigler L, Cedeño-Vázquez JR, Cupul-Magaña FG (2011) Método de detección visual nocturna (DVN). In: Sánchez-Herrera O, López-Segurajáuregui G, García-Naranjo-Ortiz-de la-Huerta A, Benítez-Díaz H (comps) Programa de Monitoreo del Cocodrilo de Pantano (Crocodylus moreletii). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México Belice-Guatemala, México

  • Smith PN, Cobb GP, Godard-Codding C, Hoff D, McMurry ST, Rainwater TR et al (2007) Contaminant exposure in terrestrial vertebrates. Environ Pollut 150:41–64

    Article  CAS  Google Scholar 

  • Trillanes CE, Pérez-Jiménez JC, Rosíles-Martínez R, González-Jáuregui M (2014) Metals in the caudal scutes of Morelet’s crocodile (Crocodylus moreletii) from the Southern Gulf of Mexico. Bull Environ Contam Toxicol 93:423–428

    Article  CAS  Google Scholar 

  • Triunfante P, Soares ME, Santos A, Tavares S, Carmo H, Bastos ML (2009) Mercury fatal intoxication: two case reports. Forensic Sci Int 184:e1–e6

    Article  CAS  Google Scholar 

  • Van-deer-Oord JJ, DeLey M (1994) Distribution of metallothionein in normal and pathological human skin. Arch Dermatol Res 286:62–68

    Article  Google Scholar 

  • Vázquez FJ (2005) Toxicidad comparada de zinc, plomo y mercurio para Zoea I de Chasmagnathus granulatus (Brachyura). Tesina de Ciencias Exactas y Naturales. Universidad de Belgrano. Argentina

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17(2):146–160

    Article  CAS  Google Scholar 

  • Woodward AR, Marion WR (1978) An evaluation of factors affecting night-light counts of alligators. Proc Annu Conf Southeast Assoc Fish Wildl Agencies 32:291–302

    Google Scholar 

  • Xu Q, Fang S, Wang Z, Wang Z (2006) Heavy metal distribution in tissues and eggs of Chinese alligator (Alligator sinensis). Arch Environ Contam Toxicol 50:580–586

    Article  CAS  Google Scholar 

  • Yamamura M, Suzuki KT (1984) Isolation and characterization of metallothionein from the tortoise Clemmys mutica. Comp Biochem Physiol C 79:63–69

    Article  CAS  Google Scholar 

  • Yanochko GM, Jagoe CH, Brisbin IL Jr (1997) Tissue mercury concentrations in alligators (Alligator mississippiensis) from the Florida Everglades and the Savannah River Site, South Carolina. Arch Environ Contam Toxicol 32:323–328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Consejo Nacional de Ciencia y Tecnologia, El Colegio de la Frontera Sur, and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Project “Monitoreo del cocodrilo de pantano (Crocodylus moreletii) MéxicoBelice-Guatemala”). We thank Fernando Gonzalez Avila, Raymundo Mineros Ramírez, Roberto Herrera Pavón, and Irving Rosas López for field assistance and the family Rosas Carmona for providing support and accommodation during the surveys. We thank Adriana Zavala for assistance in laboratory analyses. We thank Thomas R. Rainwater and two anonymous reviewers for valuable comments on a previous version of the manuscript. Research permits for this study were issued by the Dirección General de Vida Silvestre of the Secretaría del Medio Ambiente y Recursos Naturales (OFICIO NÚM/SGPA/DGVS/04288/12 and OFICIO NÚM/SGPA/DGVS/00911/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Cedeño-Vázquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buenfil-Rojas, A.M., Álvarez-Legorreta, T. & Cedeño-Vázquez, J.R. Metals and Metallothioneins in Morelet’s Crocodile (Crocodylus moreletii) from a Transboundary River Between Mexico and Belize. Arch Environ Contam Toxicol 68, 265–273 (2015). https://doi.org/10.1007/s00244-014-0088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0088-5

Keywords

Navigation