Skip to main content

Advertisement

Log in

International Alliance of Urolithiasis (IAU) guidelines on the metabolic evaluation and medical management of urolithiasis

  • Review
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

The aim of this study was to construct the fourth in a series of guidelines on the treatment of urolithiasis by the International Alliance of Urolithiasis (IAU) that by providing a clinical framework for the metabolic evaluation, prevention, and follow-up of patients with urolithiasis based on the best available published literature. All recommendations were summarized following a systematic review and assessment of the literature in the PubMed database from January 1976 to June 2022. Each generated recommendation was graded using a modified GRADE methodology. Guideline recommendations were developed that addressed the following topics: initial evaluation, metabolic testing, dietary measures, medical management, and follow-up of recurrent stone formers. It was emphasized by the Panel that prevention of new stone formation is as important as the surgical removal of the stones. Although general preventive measures may be effective in reducing stone recurrence rates in some patients, specific medical and dietary management should be well considered and eventually applied in an individualized manner based on the outcomes of metabolic work-up, stone analysis and some certain patient related factors. A detailed follow-up of each case is essential depending on the metabolic activity of each individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng G, Mai Z, Xia S et al (2017) Prevalence of kidney stones in China: an ultrasonography based cross-sectional study. BJU Int 120:109–116

    Article  PubMed  Google Scholar 

  2. Scales CD, Smith AC, Hanley JM, Saigal CS (2012) Prevalence of kidney stones in the United States. Eur Urol 62:160–165

    Article  PubMed  PubMed Central  Google Scholar 

  3. Antonelli JA, Maalouf NM, Pearle MS, Lotan Y (2014) Use of the national health and nutrition examination survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030. Eur Urol 66:724–729

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fryar CD, Kruszon-Moran D, Gu Q, Carroll M, Ogden CL (2021) Mean body weight, height, waist circumference, and body mass index among children and adolescents: United States, 1999–2018. Natl Health Stat Rep 1–24

  5. Zhu W, Liu Y, Lan Y et al (2019) Dietary vinegar prevents kidney stone recurrence via epigenetic regulations. EBioMedicine. https://doi.org/10.1016/j.ebiom.2019.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morgan MSC, Pearle MS (2016) Medical management of renal stones. BMJ i52

  7. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ, GRADE Working Group (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gonzalez-Padilla DA, Dahm P (2021) Evidence-based urology: understanding GRADE methodology. Eur Urol Focus 7:1230–1233

    Article  PubMed  Google Scholar 

  9. Pearle MS, Goldfarb DS, Assimos DG et al (2014) Medical management of kidney stones: AUA guideline. J Urol 192:316–324

    Article  PubMed  Google Scholar 

  10. Skolarikos A, Straub M, Knoll T, Sarica K, Seitz C, Petřík A, Türk C (2015) Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol 67:750–763

    Article  PubMed  Google Scholar 

  11. Robertson WG (2021) LITHOSCREEN: a comprehensive screening program and database for the assessment and treatment management of patients with kidney stones. Urolithiasis 49:387–397

    Article  PubMed  Google Scholar 

  12. En T, Mj S, Gc C (2005) Obesity, weight gain, and the risk of kidney stones. JAMA. https://doi.org/10.1001/jama.293.4.455

    Article  Google Scholar 

  13. M D, P J (2007) Diabetes and nephrolithiasis. Curr Diab Rep. https://doi.org/10.1007/s11892-007-0075-6

  14. Obligado SH, Goldfarb DS (2008) The association of nephrolithiasis with hypertension and obesity: a review. Am J Hypertens 21:257–264

    Article  CAS  PubMed  Google Scholar 

  15. Johri N, Cooper B, Robertson W, Choong S, Rickards D, Unwin R (2010) An update and practical guide to renal stone management. Nephron Clin Pract 116:c159-171

    Article  PubMed  Google Scholar 

  16. Kadlec AO, Turk TM (2013) Update on the evaluation of repeated stone formers. Curr Urol Rep 14:549–556

    Article  PubMed  Google Scholar 

  17. Curhan GC, Willett WC, Speizer FE, Stampfer MJ (2001) Twenty-four–hour urine chemistries and the risk of kidney stones among women and men. Kidney Int 59:2290–2298

    Article  CAS  PubMed  Google Scholar 

  18. Pozdzik A, Maalouf N, Letavernier E et al (2019) Meeting report of the “Symposium on kidney stones and mineral metabolism: calcium kidney stones in 2017.” J Nephrol 32:681–698

    Article  PubMed  Google Scholar 

  19. Laube N, Pullmann M, Hergarten S, Schmidt M, Hesse A (2003) The alteration of urine composition due to stone material present in the urinary tract. Eur Urol 44:595–599

    Article  CAS  PubMed  Google Scholar 

  20. Hess B, Hasler-Strub U, Ackermann D, Jaeger P (1997) Metabolic evaluation of patients with recurrent idiopathic calcium nephrolithiasis. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 12:1362–1368

    CAS  Google Scholar 

  21. Norman RW, Bath SS, Robertson WG, Peacock M (1984) When should patients with symptomatic urinary stone disease be evaluated metabolically? J Urol 132:1137–1139

    Article  CAS  PubMed  Google Scholar 

  22. Ferraz RRN, Baxmann AC, Ferreira LG, Nishiura JL, Siliano PR, Gomes SA, Moreira SRS, Heilberg IP (2006) Preservation of urine samples for metabolic evaluation of stone-forming patients. Urol Res 34:329–337

    Article  PubMed  Google Scholar 

  23. Yilmaz G, Yilmaz F, Haklıgör A, Yucel D (2008) Are preservatives necessary in 24-hour urine measurements? Clin Biochem 41:899–901

    Article  CAS  PubMed  Google Scholar 

  24. Gambaro G, Croppi E, Coe F et al (2016) Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol 29:715–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sromicki J, Kacl G, Föhl M, Hess B (2022) Prospective long-term evaluation of incomplete distal renal tubular acidosis in idiopathic calcium nephrolithiasis diagnosed by low-dose NH4CL loading – gender prevalences and impact of alkali treatment. J Nephrol 35:1619–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nayan M, Elkoushy MA, Andonian S (2012) Variations between two 24-hour urine collections in patients presenting to a tertiary stone clinic. Uric Acid 6:5

    Google Scholar 

  27. Parks JH, Goldfisher E, Asplin JR, Coe FL (2002) A single 24-hour urine collection is inadequate for the medical evaluation of nephrolithiasis. J Urol 167:1607–1612

    Article  PubMed  Google Scholar 

  28. Healy KA, Hubosky SG, Bagley DH (2013) 24-Hour Urine Collection in the metabolic evaluation of stone formers: is one study adequate? J Endourol 27:374–378

    Article  PubMed  Google Scholar 

  29. Parks JH, Coward M, Coe FL (1997) Correspondence between stone composition and urine supersaturation in nephrolithiasis. Kidney Int 51:894–900

    Article  CAS  PubMed  Google Scholar 

  30. Borghi L, Guerra A, Meschi T, Briganti A, Schianchi T, Allegri F, Novarini A (1999) Relationship between supersaturation and calcium oxalate crystallization in normals and idiopathic calcium oxalate stone formers. Kidney Int 55:1041–1050

    Article  CAS  PubMed  Google Scholar 

  31. Yuzhakov S, Steadman SD, Otto BJ, Bird VG, Canales BK (2021) 24-Hour urine calcium oxalate supersaturation risk correlates with computerized tomography volumetric calcium oxalate stone growth. J Urol 206:1438–1444

    Article  PubMed  Google Scholar 

  32. Prochaska M, Taylor E, Ferraro PM, Curhan G (2018) Relative supersaturation of 24-hour urine and likelihood of kidney stones. J Urol 199:1262–1266

    Article  PubMed  Google Scholar 

  33. Tiselius HG (1991) Aspects on estimation of the risk of calcium oxalate crystallization in urine. Urol Int 47:255–259

    Article  CAS  PubMed  Google Scholar 

  34. Tiselius H-G (1984) A simplified estimate of the ion-activity product of calcium phosphate in urine. Eur Urol 10:191–195

    Article  CAS  PubMed  Google Scholar 

  35. Hosking DH, Erickson SB, Van den Berg CJ, Wilson DM, Smith LH (1983) The stone clinic effect in patients with idiopathic calcium urolithiasis. J Urol 130:1115–1118

    Article  CAS  PubMed  Google Scholar 

  36. Tiselius HG (1989) Standardized estimate of the ion activity product of calcium oxalate in urine from renal stone formers. Eur Urol 16:48–50

    Article  CAS  PubMed  Google Scholar 

  37. Omar M, Sarkissian C, Jianbo L, Calle J, Monga M, Omar M, Sarkissian C, Jianbo L, Calle J, Monga M (2016) Dipstick spot urine pH does not accurately represent 24 hour urine PH measured by an electrode. Int Braz J Urol 42:546–549

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ferraro PM, Lopez F, Petrarulo M, Barbarini S, Curhan GC, Marangella M, Taylor EN (2022) Estimating 24-hour urinary excretion using spot urine measurements in kidney stone formers. Nephrol Dial Transplant 37:2171–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hong YH, Dublin N, Razack AH, Mohd MA, Husain R (2010) Twenty-four hour and spot urine metabolic evaluations: correlations versus agreements. Urology 75:1294–1298

    Article  PubMed  Google Scholar 

  40. Williams JC, Gambaro G, Rodgers A et al (2021) Urine and stone analysis for the investigation of the renal stone former: a consensus conference. Urolithiasis 49:1–16

    Article  PubMed  Google Scholar 

  41. Daudon M, Hennequin C, Boujelben G, Lacour B, Jungers P (2005) Serial crystalluria determination and the risk of recurrence in calcium stone formers. Kidney Int 67:1934–1943

    Article  PubMed  Google Scholar 

  42. Daudon M, Cohen-Solal F, Barbey F, Gagnadoux M-F, Knebelmann B, Jungers P (2003) Cystine crystal volume determination: a useful tool in the management of cystinuric patients. Urol Res 31:207–211

    Article  CAS  PubMed  Google Scholar 

  43. Robert M, Boularan AM, Delbos O, Monnier L, Grasset D (1996) Evaluation of the risk of stone formation: study on crystalluria in patients with recurrent calcium oxalate urolithiasis. Eur Urol 29:456–461

    Article  CAS  PubMed  Google Scholar 

  44. Kourambas J, Aslan P, Teh CL, Mathias BJ, Preminger GM (2001) Role of stone analysis in metabolic evaluation and medical treatment of nephrolithiasis. J Endourol 15:181–186

    Article  CAS  PubMed  Google Scholar 

  45. Pak CYC, Poindexter JR, Adams-Huet B, Pearle MS (2003) Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med 115:26–32

    Article  CAS  PubMed  Google Scholar 

  46. Gilad R, Williams JC, Usman KD, Holland R, Golan S, Tor R, Lifshitz D (2017) Interpreting the results of chemical stone analysis in the era of modern stone analysis techniques. J Nephrol 30:135–140

    Article  CAS  PubMed  Google Scholar 

  47. Taheri M, Basiri A, Taheri F, Khoshdel AR, Fallah MA, Pur Nourbakhsh F (2019) The agreement between current stone analysis techniques and SEM-EDAX in urolithiasis. Urol J 16:6–11

    PubMed  Google Scholar 

  48. Pozdzik A, Van Haute C, Maalouf N, Letavernier E, Williams JC, Sakhaee K (2021) “Trust my morphology”, the key message from a kidney stone. Urolithiasis 49:493–494

    Article  PubMed  PubMed Central  Google Scholar 

  49. Taguchi K, Yasui T, Milliner DS, Hoppe B, Chi T (2017) Genetic risk factors for idiopathic urolithiasis: a systematic review of the literature and causal network analysis. Eur Urol Focus 3:72–81

    Article  PubMed  Google Scholar 

  50. Cogal AG, Arroyo J, Shah RJ et al (2021) Comprehensive genetic analysis reveals complexity of monogenic urinary stone disease. Kidney Int Rep 6:2862–2884

    Article  PubMed  PubMed Central  Google Scholar 

  51. Robertson WG (2016) Dietary recommendations and treatment of patients with recurrent idiopathic calcium stone disease. Urolithiasis 44:9–26

    Article  CAS  PubMed  Google Scholar 

  52. Ferraro PM, Bargagli M, Trinchieri A, Gambaro G (2020) Risk of kidney stones: influence of dietary factors, dietary patterns, and vegetarian-vegan diets. Nutrients 12:E779

    Article  Google Scholar 

  53. Littlejohns TJ, Neal NL, Bradbury KE, Heers H, Allen NE, Turney BW (2020) Fluid intake and dietary factors and the risk of incident kidney stones in UK biobank: a population-based prospective cohort study. Eur Urol Focus 6:752–761

    Article  PubMed  Google Scholar 

  54. Taylor EN, Curhan GC (2008) Fructose consumption and the risk of kidney stones. Kidney Int 73:207–212

    Article  CAS  PubMed  Google Scholar 

  55. Messa P, Marangella M, Paganin L, Codardini M, Cruciatti A, Turrin D, Filiberto Z (1977) Different dietary calcium intake and relative supersaturation of calcium oxalate in the urine of patients forming renal stones. Clin Sci Lond Engl 93:257–263

    Article  Google Scholar 

  56. Hess B (1998) High-calcium intake abolishes hyperoxaluria and reduces urinary crystallization during a 20-fold normal oxalate load in humans. Nephrol Dial Transplant 13:2241–2247

    Article  CAS  PubMed  Google Scholar 

  57. Taylor EN, Curhan GC (2013) Dietary calcium from dairy and nondairy sources, and risk of symptomatic kidney stones. J Urol 190:1255–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  59. Lange JN, Wood KD, Mufarrij PW, Callahan MF, Easter L, Knight J, Holmes RP, Assimos DG (2012) The impact of dietary calcium and oxalate ratios on stone risk. Urology 79:1226–1229

    Article  PubMed  Google Scholar 

  60. Giannini S, Nobile M, Sartori L, Dalle Carbonare L, Ciuffreda M, Corrò P, D’Angelo A, Calò L, Crepaldi G (1999) Acute effects of moderate dietary protein restriction in patients with idiopathic hypercalciuria and calcium nephrolithiasis. Am J Clin Nutr 69:267–271

    Article  CAS  PubMed  Google Scholar 

  61. Pm F, Ei M, Gc C, G G, En T, (2016) Dietary protein and potassium, diet-dependent net acid load, and risk of incident kidney stones. Clin J Am Soc Nephrol CJASN. https://doi.org/10.2215/CJN.01520216

    Article  Google Scholar 

  62. Hess B (1998) “Bad dietary habits” and recurrent calcium oxalate nephrolithiasis. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 13:1033–1038

    CAS  Google Scholar 

  63. Ferraro PM, Taylor EN, Gambaro G, Curhan GC (2017) Vitamin D intake and the risk of incident kidney stones. J Urol 197:405–410

    Article  CAS  PubMed  Google Scholar 

  64. Ferraro PM, Curhan GC, Gambaro G, Taylor EN (2016) Total, dietary, and supplemental vitamin c intake and risk of incident kidney stones. Am J Kidney Dis Off J Natl Kidney Found 67:400–407

    Article  CAS  Google Scholar 

  65. Thomas LDK, Elinder C-G, Tiselius H-G, Wolk A, Akesson A (2013) Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med 173:386–388

    Article  PubMed  Google Scholar 

  66. Traxer O, Huet B, Poindexter J, Pak CYC, Pearle MS (2003) Effect of ascorbic acid consumption on urinary stone risk factors. J Urol 170:397–401

    Article  CAS  PubMed  Google Scholar 

  67. Curhan GC, Willett WC, Rimm EB, Speizer FE, Stampfer MJ (1998) Body size and risk of kidney stones. J Am Soc Nephrol JASN 9:1645–1652

    Article  CAS  PubMed  Google Scholar 

  68. Sorensen MD, Chi T, Shara NM et al (2014) Activity, energy intake, obesity, and the risk of incident kidney stones in postmenopausal women: a report from the women’s health initiative. J Am Soc Nephrol JASN 25:362

    Article  PubMed  Google Scholar 

  69. Fink HA, Wilt TJ, Eidman KE, Garimella PS, MacDonald R, Rutks IR, Brasure M, Kane RL, Ouellette J, Monga M (2013) Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann Intern Med 158:535–543

    Article  PubMed  Google Scholar 

  70. Ettinger B, Citron JT, Livermore B, Dolman LI (1988) Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium hydroxide does not. J Urol 139:679–684

    Article  CAS  PubMed  Google Scholar 

  71. Vigen R, Weideman RA, Reilly RF (2011) Thiazides diuretics in the treatment of nephrolithiasis: are we using them in an evidence-based fashion? Int Urol Nephrol 43:813–819

    Article  CAS  PubMed  Google Scholar 

  72. Alon US (2018) The effects of diuretics on mineral and bone metabolism. Pediatr Endocrinol Rev 15:291–297

    PubMed  Google Scholar 

  73. Nijenhuis T, Vallon V, van der Kemp AWCM, Loffing J, Hoenderop JGJ, Bindels RJM (2005) Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 115:1651–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Martínez García M, Trincado Aznar P, Pérez Fernández L, Azcona Monreal I, López Alaminos ME, Acha Pérez J, Albero Gamboa R (2019) A comparison of induced effects on urinary calcium by thiazides and different dietary salt doses: Implications in clinical practice. Nefrologia 39:73–79

    Article  PubMed  Google Scholar 

  75. Pak CYC, Sakhaee K, Moe OW, Poindexter J, Adams-Huet B, with Colleagues (2011) Defining hypercalciuria in nephrolithiasis. Kidney Int 80:777–782

  76. Song Y, Hernandez N, Shoag J, Goldfarb DS, Eisner BH (2016) Potassium citrate decreases urine calcium excretion in patients with hypocitraturic calcium oxalate nephrolithiasis. Urolithiasis 44:145–148

    Article  CAS  PubMed  Google Scholar 

  77. Kessler T, Hesse A (2000) Cross-over study of the influence of bicarbonate-rich mineral water on urinary composition in comparison with sodium potassium citrate in healthy male subjects. Br J Nutr 84:865–871

    Article  CAS  PubMed  Google Scholar 

  78. Pinheiro VB, Baxmann AC, Tiselius H-G, Heilberg IP (2013) The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers. Urology 82:33–37

    Article  PubMed  Google Scholar 

  79. Caudarella R, Vescini F, Buffa A, Stefoni S (2003) Citrate and mineral metabolism: kidney stones and bone disease. Front Biosci J Virtual Libr 8:s1084-1106

    Article  Google Scholar 

  80. Leslie SW, Bashir K (2022) Hypocitraturia and renal calculi. StatPearls

  81. Anaizi NH, Cohen JJ, Black AJ, Wertheim SJ (1986) Renal tissue citrate: independence from citrate utilization, reabsorption, and pH. Am J Physiol 251:F547-561

    CAS  PubMed  Google Scholar 

  82. Andersson H, Jagenburg R (1974) Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy. Gut 15:360–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Asplin JR (2016) The management of patients with enteric hyperoxaluria. Urolithiasis 44:33–43

    Article  CAS  PubMed  Google Scholar 

  84. Sromicki J, Hess B (2020) Simple dietary advice targeting five urinary parameters reduces urinary supersaturation in idiopathic calcium oxalate stone formers. Urolithiasis 48:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Domrongkitchaiporn S, Sopassathit W, Stitchantrakul W, Prapaipanich S, Ingsathit A, Rajatanavin R (2004) Schedule of taking calcium supplement and the risk of nephrolithiasis. Kidney Int 65:1835–1841

    Article  CAS  PubMed  Google Scholar 

  86. Zimmermann DJ, Voss S, von Unruh GE, Hesse A (2005) Importance of magnesium in absorption and excretion of oxalate. Urol Int 74:262–267

    Article  CAS  PubMed  Google Scholar 

  87. Liebman M, Costa G (2000) Effects of calcium and magnesium on urinary oxalate excretion after oxalate loads. J Urol 163:1565–1569

    Article  CAS  PubMed  Google Scholar 

  88. Jiang J, Knight J, Easter LH, Neiberg R, Holmes RP, Assimos DG (2011) Impact of dietary calcium and oxalate, and Oxalobacter formigenes colonization on urinary oxalate excretion. J Urol 186:135–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mydlík M, Derzsiová K (2010) Vitamin B6 and oxalic acid in clinical nephrology. J Ren Nutr Off J Counc Ren Nutr Natl Kidney Found 20:S95-102

    Google Scholar 

  90. Espino-Grosso P, Monsour C, Canales BK (2019) The effect of calcium and vitamin B6 supplementation on oxalate excretion in a rodent gastric bypass model of enteric hyperoxaluria. Urology 124:310.e9-310.e14

    Article  PubMed  Google Scholar 

  91. Okada A, Matsumoto T, Ohshima H et al (2022) Bisphosphonate use may reduce the risk of urolithiasis in astronauts on long-term spaceflights. JBMR Plus 6:e10550

    Article  CAS  PubMed  Google Scholar 

  92. Maalouf NM, Cameron MA, Moe OW, Sakhaee K (2004) Novel insights into the pathogenesis of uric acid nephrolithiasis. Curr Opin Nephrol Hypertens 13:181–189

    Article  PubMed  Google Scholar 

  93. Kanbara A, Hakoda M, Seyama I (2010) Urine alkalization facilitates uric acid excretion. Nutr J 9:45

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kamphuis GM, Wouter van Hattum J, de Bie P, Somani BK (2019) Method of alkalization and monitoring of urinary pH for prevention of recurrent uric acid urolithiasis: a systematic review. Transl Androl Urol 8:S448–S456

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rodman JS (2002) Intermittent versus continuous alkaline therapy for uric acid stones and ureteral stones of uncertain composition. Urology 60:378–382

    Article  PubMed  Google Scholar 

  96. Abate N, Chandalia M, Cabo-Chan AV, Moe OW, Sakhaee K (2004) The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int 65:386–392

    Article  CAS  PubMed  Google Scholar 

  97. Bobulescu IA, Park SK, Xu LHR, Blanco F, Poindexter J, Adams-Huet B, Davidson TL, Sakhaee K, Maalouf NM, Moe OW (2019) Net acid excretion and urinary organic anions in idiopathic uric acid nephrolithiasis. Clin J Am Soc Nephrol CJASN 14:411–420

    Article  CAS  PubMed  Google Scholar 

  98. Pearle MS, Roehrborn CG, Pak CY (1999) Meta-analysis of randomized trials for medical prevention of calcium oxalate nephrolithiasis. J Endourol 13:679–685

    Article  CAS  PubMed  Google Scholar 

  99. Goldfarb DS, MacDonald PA, Gunawardhana L, Chefo S, McLean L (2013) Randomized controlled trial of febuxostat versus allopurinol or placebo in individuals with higher urinary uric acid excretion and calcium stones. Clin J Am Soc Nephrol CJASN 8:1960–1967

    Article  CAS  PubMed  Google Scholar 

  100. Dion M, Ankawi G, Chew B, Paterson R, Sultan N, Hoddinott P, Razvi H (2016) CUA guideline on the evaluation and medical management of the kidney stone patient – 2016 update. Can Urol Assoc J 10:E347–E358

    Article  PubMed  PubMed Central  Google Scholar 

  101. Moussa M, Papatsoris AG, Abou Chakra M, Moussa Y (2020) Update on cystine stones: current and future concepts in treatment. Intractable Rare Dis Res 9:71–78

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sterrett SP, Penniston KL, Wolf JS, Nakada SY (2008) Acetazolamide is an effective adjunct for urinary alkalization in patients with uric acid and cystine stone formation recalcitrant to potassium citrate. Urology 72:278–281

    Article  PubMed  Google Scholar 

  103. Pak CY, Fuller C, Sakhaee K, Zerwekh JE, Adams BV (1986) Management of cystine nephrolithiasis with alpha-mercaptopropionylglycine. J Urol 136:1003–1008

    Article  CAS  PubMed  Google Scholar 

  104. Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2016) EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol 69:468–474

    Article  PubMed  Google Scholar 

  105. Das P, Gupta G, Velu V, Awasthi R, Dua K, Malipeddi H (2017) Formation of struvite urinary stones and approaches towards the inhibition-A review. Biomed Pharmacother Biomedecine Pharmacother 96:361–370

    Article  CAS  Google Scholar 

  106. Wang LP, Wong HY, Griffith DP (1997) Treatment options in struvite stones. Urol Clin North Am 24:149–162

    Article  CAS  PubMed  Google Scholar 

  107. Bichler K-H, Eipper E, Naber K, Braun V, Zimmermann R, Lahme S (2002) Urinary infection stones. Int J Antimicrob Agents 19:488–498

    Article  CAS  PubMed  Google Scholar 

  108. Flannigan R, Choy WH, Chew B, Lange D (2014) Renal struvite stones–pathogenesis, microbiology, and management strategies. Nat Rev Urol 11:333–341

    Article  CAS  PubMed  Google Scholar 

  109. Hesse A, Heimbach D (1999) Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World J Urol 17:308–315

    Article  CAS  PubMed  Google Scholar 

  110. Zisman AL (2017) Effectiveness of treatment modalities on kidney stone recurrence. Clin J Am Soc Nephrol CJASN 12:1699–1708

    Article  CAS  PubMed  Google Scholar 

  111. Williams JJ, Rodman JS, Peterson CM (1984) A randomized double-blind study of acetohydroxamic acid in struvite nephrolithiasis. N Engl J Med 311:760–764

    Article  CAS  PubMed  Google Scholar 

  112. Griffith DP, Khonsari F, Skurnick JH, James KE (1988) A randomized trial of acetohydroxamic acid for the treatment and prevention of infection-induced urinary stones in spinal cord injury patients. J Urol 140:318–324

    Article  CAS  PubMed  Google Scholar 

  113. Griffith DP, Gleeson MJ, Lee H, Longuet R, Deman E, Earle N (1991) Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur Urol 20:243–247

    Article  CAS  PubMed  Google Scholar 

  114. Marien T, Miller NL (2015) Treatment of the infected stone. Urol Clin North Am 42:459–472

    Article  PubMed  Google Scholar 

  115. Shee K, Stoller ML (2022) Perspectives in primary hyperoxaluria — historical, current and future clinical interventions. Nat Rev Urol 19:137–146

    Article  PubMed  Google Scholar 

  116. Hoyer-Kuhn H, Kohbrok S, Volland R, Franklin J, Hero B, Beck BB, Hoppe B (2014) Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol CJASN 9:468–477

    Article  PubMed  Google Scholar 

  117. Scott LJ, Keam SJ (2021) Lumasiran: first approval. Drugs 81:277–282

    Article  CAS  PubMed  Google Scholar 

  118. Garrelfs SF, Frishberg Y, Hulton SA et al (2021) Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med 384:1216–1226

    Article  CAS  PubMed  Google Scholar 

  119. Fuster DG, Moe OW (2018) Incomplete distal renal tubular acidosis and kidney stones. Adv Chronic Kidney Dis 25:366–374

    Article  PubMed  PubMed Central  Google Scholar 

  120. Shavit L, Chen L, Ahmed F, Ferraro PM, Moochhala S, Walsh SB, Unwin R (2016) Selective screening for distal renal tubular acidosis in recurrent kidney stone formers: initial experience and comparison of the simultaneous furosemide and fludrocortisone test with the short ammonium chloride test. Nephrol Dial Transplant 31:1870–1876

    Article  CAS  PubMed  Google Scholar 

  121. Unwin RJ, Capasso G (2001) The renal tubular acidoses. J R Soc Med 94:221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Preminger GM, Sakhaee K, Skurla C, Pak CY (1985) Prevention of recurrent calcium stone formation with potassium citrate therapy in patients with distal renal tubular acidosis. J Urol 134:20–23

    Article  CAS  PubMed  Google Scholar 

  123. Fulgham PF, Assimos DG, Pearle MS, Preminger GM (2013) Clinical effectiveness protocols for imaging in the management of ureteral calculous disease: AUA technology assessment. J Urol 189:1203–1213

    Article  PubMed  Google Scholar 

  124. Wollin DA, Kaplan AG, Preminger GM, Ferraro PM, Nouvenne A, Tasca A, Croppi E, Gambaro G, Heilberg IP (2018) Defining metabolic activity of nephrolithiasis – appropriate evaluation and follow-up of stone formers. Asian J Urol 5:235

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sorokin I, Pearle MS (2018) Medical therapy for nephrolithiasis: State of the art. Asian J Urol 5:243–255

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jiang P, Xie L, Arada R, Patel RM, Landman J, Clayman RV (2021) Qualitative review of clinical guidelines for medical and surgical management of urolithiasis: consensus and controversy 2020. J Urol 205:999–1008

    Article  PubMed  Google Scholar 

  127. Leslie SW, Sajjad H, Bashir K (2022) 24-Hour Urine Testing for Nephrolithiasis: Interpretation Guideline. StatPearls

  128. Li S, Iremashvili V, Vernez SL, Penniston KL, Jhagroo RA, Best SL, Hedican SP, Nakada SY (2021) Effect of stone composition on surgical stone recurrence: single center longitudinal analysis. Can J Urol 28:10744–10749

    PubMed  Google Scholar 

  129. Zeng G, Zhao Z, Wu W, Ou L, Liang Y, Yuan J (2014) Interconversion of stone composition profiles from two recurrent stone episodes in stone formers. Clin Chem Lab Med 52:1019–1024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: Guohua Zeng, Kemal Sarica Drafting of the manuscript: Guohua Zeng, Wei Zhu, William G Robertson, Kristina L Penniston, Daron Smith, Agnieszka Pozdzik, Tzevat Tefik, Domenico Prezioso, Margaret S Pearle, Ben H Chew, Julian Veser, Cristian Fiori, Yaoliang Deng, Michael Straub, Christian Türk, Michelle J Semins, Kunjie Wang, Martino Marangella, Zhankui Jia, Liyuan Zhang, Zhangqun Ye, Hans-Göran Tiselius, Kemal Sarica Critical revision of the manuscript for important intellectual content: William G Robertson, Margaret S Pearle, Hans-Göran Tiselius, Kemal Sarica

Corresponding authors

Correspondence to Guohua Zeng, Hans-Göran Tiselius or Kemal Sarica.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, G., Zhu, W., Robertson, W.G. et al. International Alliance of Urolithiasis (IAU) guidelines on the metabolic evaluation and medical management of urolithiasis. Urolithiasis 51, 4 (2023). https://doi.org/10.1007/s00240-022-01387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00240-022-01387-2

Keywords

Navigation