Skip to main content
Log in

Essential is Not Irreplaceable: Fitness Dynamics of Experimental E. coli RNase P RNA Heterologous Replacement

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

While critical cellular components—such as the RNA moiety of bacterial ribonuclease P—can sometimes be replaced with a highly divergent homolog, the cellular response to such perturbations is often unexpectedly complex. RNase P is a ubiquitous and essential ribonucleoprotein involved in the processing of multiple RNA substrates, including tRNAs, small non-coding RNAs and intergenic operons. In Bacteria, RNase P RNAs have been subdivided—based on their secondary and tertiary structures—into two major groups (A and B), each with a distinct phylogenetic distribution. Despite the vast phylogenetic and structural gap that separates the two RNase P RNA classes, previous work suggested their interchangeability. Here, we explore in detail the functional and fitness consequences of replacing the endogenous Type-A Escherichia coli RNase P RNA with a Type-B homolog derived from Bacillus subtilis, and show that E. coli cells forced to survive with a chimeric RNase P as their sole source of RNase P activity exhibit extremely variable responses. The chimeric RNase P alters growth rates—used here as an indirect measure of fitness—in unpredictable ways, ranging from 3- to 20-fold reductions in maximal growth rate. The transcriptional behavior of cells harboring the chimeric RNAse P is also perturbed, affecting the levels of at least 79 different transcripts. Such transcriptional plasticity represents an important mechanism of transient adaptation which, when coupled with the emergence and eventual fixation of compensatory mutations, enables the cells to overcome the disruption of this tightly coevolving ribonucleoprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alifano P, Rivellini F, Piscitelli C, Arraiano CM, Bruni CB, Carlomagno MS (1994) Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Dev 8:3021–3031

    Article  CAS  PubMed  Google Scholar 

  • Altman S (2011) Ribonuclease P. Philos Trans R Soc B-Biol Sci 366:2936–2941

    Article  CAS  Google Scholar 

  • Altman S, Smith JD (1971) Tyrosine tRNA precursor molecule polynucleotide sequence. Nat New Biol 233:35–39

    Article  CAS  PubMed  Google Scholar 

  • Barrick JE, Kauth MR, Strelioff CC, Lenski RE (2010) Escherichia coli rpoB mutants have increased evolvability in proportion to their fitness defects. Mol Biol Evol 27:1338–1347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourgaize DB, Fournier MJ (1987) Initiation of translation is impaired in E. coli cells deficient in 4.5S RNA. Nature 325:281–284

    Article  CAS  PubMed  Google Scholar 

  • Buck AH, Dalby AB, Poole AW, Kazantsev AV, Pace NR (2005a) Protein activation of a ribozyme: the role of bacterial RNase P protein. EMBO J 24:3360–3368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buck AH, Kazantsev AV, Dalby AB, Pace NR (2005b) Structural perspective on the activation of RNAse P RNA by protein. Nat Struct Mol Biol 12:958–964

    Article  CAS  PubMed  Google Scholar 

  • Bull JJ, Badgett MR, Wichman HA, Huelsenbeck JP, Hillis DM, Gulati A, Ho C, Molineux IJ (1997) Exceptional convergent evolution in a virus. Genetics 147:1497–1507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cases I, de Lorenzo V (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3:105–118

    Article  CAS  PubMed  Google Scholar 

  • Chen J-L, Nolan JM, Harris ME, Pace NR (1998) Comparative photocross-linking analysis of the tertiary structures of Escherichia coli and Bacillus subtilis RNase P RNAs. EMBO J 17:1515–1525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cherayil B, Krupp G, Schuchert P, Char S, Soll D (1987) The RNA components of Schizosaccharomyces pombe RNase P are essential for cell viability. Gene 60:157–161

    Article  CAS  PubMed  Google Scholar 

  • Clune J, Misevic D, Ofria C, Lenski RE, Elena SF, Sanjuan R (2008) Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes. PLoS Comput Biol 4:e1000187

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong H, Kirsebom LA, Nilsson L (1996) Growth rate regulation of 4.5 S RNA and M1 RNA the catalytic subunit of Escherichia coli RNase P. J Mol Biol 261:303–308

    Article  CAS  PubMed  Google Scholar 

  • Esakova O, Krasilnikov A (2010) Of proteins and RNA: the RNase P/MRP family. RNA 16:1725–1747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gossringer M, Kretschmer-Kazemi Far R, Hartmann RK (2006) Analysis of RNase P protein (rnpA) expression in Bacillus subtilis utilizing strains with suppressible rnpA expression. J Bacteriol 188:6816–6823

    Article  PubMed Central  PubMed  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace NR, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Abdelraouf K, Ledesma KR, Nikolaou M, Tam VH (2012) Predicting bacterial fitness cost associated with drug resistance. J Antimicrob Chemother 67:928–932

    Article  CAS  PubMed  Google Scholar 

  • Haga S, Tanaka T, Kikuchi Y (2004) Mutational analysis of the length of the J3/4 domain of Escherichia coli ribonuclease P ribozyme. Biosci Biotechnol Biochem 68:2630–2632

    Article  CAS  PubMed  Google Scholar 

  • Hall TA, Brown JW (2001) The ribonuclease P family. Methods Enzymol 341:56–77

    Article  CAS  PubMed  Google Scholar 

  • Harris JK, Haas ES, Williams D et al (2001) New insight into RNase P RNA structure from comparative analysis of the archaeal RNA. RNA 7:220–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartmann RK, Heinrich J, Schlegl J, Schuster H (1995) Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli. Proc Natl Acad Sci USA 92:5822–5826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  CAS  PubMed  Google Scholar 

  • Jarrous N, Gopalan V (2010) Archaeal/eukaryal RNase P: subunits, functions and RNA diversification. Nucleic Acids Res 38:7885–7894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jovanovic M, Sanchez R, Altman S, Gopalan V (2002) Elucidation of structure–function relationships in the protein subunit of bacterial RNase P using a genetic complementation approach. Nucleic Acids Res 30:5065–5073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kazantsev AV, Pace NR (2006) Bacterial RNase P: a new view of an ancient enzyme. Nat Rev Microbiol 4:729–740

    Article  CAS  PubMed  Google Scholar 

  • Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L et al (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39:D583–D590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim MS, Park BH, Kim S, Lee YJ, Chung JH, Lee Y (1998) Complementation of the growth defect of an rnpA49 mutant of Escherichia coli by overexpression of arginine tRNA(CCG). Biochem Mol Biol Int 46:1153–1160

    CAS  PubMed  Google Scholar 

  • Komine Y, Kitabatake M, Yokogawa T, Nishikawa K, Inokuchi H (1994) A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci USA 91:9223–9227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krasilnikov AS, Yang X, Pan T, Mondragon A (2003) Crystal structure of the specificity domain of ribonuclease P. Nature 421:760–764

    Article  CAS  PubMed  Google Scholar 

  • Krivenko AA, Kazantsev AV, Adamidi C, Harrington DJ, Pace NR (2002) Expression, purification, crystallization and preliminary diffraction analysis of RNase P protein from Thermotoga maritima. Acta Crystallogr D Biol Crystallogr 58:1234–1236

    Article  PubMed  Google Scholar 

  • Lawrence NP, Richman A, Amini R, Altman S (1987) Heterologous enzyme function in Escherichia coli and the selection of genes encoding the catalytic RNA subunit of RNase P. Proc Natl Acad Sci USA 84:6825–6829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee Y, Ramamoorthy R, Park CU, Schmidt FJ (1989) Sites of initiation and pausing in the Escherichia coli rnpB (M1 RNA) transcript. J Biol Chem 264:5098–5103

    CAS  PubMed  Google Scholar 

  • Lee J, Kim Y, Kang SK, Lee Y (2008) RNase P-dependent cleavage of polycistronic mRNAs within their downstream coding regions in Escherichia coli. Bull Korean Chem Soc 29:1137

    Article  CAS  Google Scholar 

  • Li Y, Altman S (2003) A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs. Proc Natl Acad Sci USA 100:13213–13218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Cole K, Altman S (2003) The effect of a single, temperature-sensitive mutation on global gene expression in Escherichia coli. RNA 9:518–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489

    Article  CAS  PubMed  Google Scholar 

  • Masquida B, Westhof E (2011) RNase P: at last, the key finds its lock. RNA 17:1615–1618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer-Leon L, Senecoff JF, Bruckner RC, Cox MM (1984) Site-specific genetic recombination promoted by the FLP protein of the yeast 2-micron plasmid in vitro. Cold Spring Harb Symp Quant Biol 49:797–804

    Article  CAS  PubMed  Google Scholar 

  • Mohanty BK, Kushner SR (2007) Ribonuclease P processes polycistronic tRNA transcripts in Escherichia coli independent of ribonuclease E. Nucleic Acids Res 35:7614–7625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ostrowski EA, Woods RJ, Lenski RE (2008) The genetic basis of parallel and divergent phenotypic responses in evolving populations of Escherichia coli. Proc Biol Sci 275:277–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panagiotidis CA, Drainas D, Huang SC (1992) Modulation of ribonuclease P expression in Escherichia coli by polyamines. Int J Biochem 24:1625–1631

    Article  CAS  PubMed  Google Scholar 

  • Peck-Miller KA, Altman S (1991) Kinetics of the processing of the precursor to 4.5 S RNA, a naturally occurring substrate for RNase P from Escherichia coli. J Mol Biol 221:1–5

    Article  CAS  PubMed  Google Scholar 

  • Pomeranz Krummel DA, Altman S (1999) Verification of phylogenetic predictions in vivo and the importance of the tetraloop motif in a catalytic RNA. Proc Natl Acad Sci USA 96:11200–11205

    Article  CAS  PubMed  Google Scholar 

  • Pope CF, McHugh TD, Gillespie SH (2009) Methods to determine fitness in bacteria. In: Gillespie SH, McHugh TD (eds) Antibiotic resistance protocols. Humana Press, Totowa, pp 113–121

    Google Scholar 

  • Smits WK, Kuipers OP, Veening JW (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4:259–271

    Article  CAS  PubMed  Google Scholar 

  • Sniegowski PD, Gerrish PJ (2010) Beneficial mutations and the dynamics of adaptation in asexual populations. Philos Trans R Soc Lond B Biol Sci 365:1255–1263

    Article  PubMed Central  PubMed  Google Scholar 

  • Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387:703–705

    Article  CAS  PubMed  Google Scholar 

  • Syvanen M (2012) Evolutionary implications of horizontal gene transfer. Annu Rev Genet 46:341–358

    Article  CAS  PubMed  Google Scholar 

  • Torres-Larios A, Swinger KK, Pan T, Mondragon A (2006) Structure of ribonuclease P: a universal ribozyme. Curr Opin Struct Biol 16:327–335

    Article  CAS  PubMed  Google Scholar 

  • Travisano M, Lenski RE (1996) Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation. Genetics 143:15–26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turrini PCG, Loveland JL, Dorit RL (2012) By any other name: heterologous replacement of the Escherichia coli RNase P protein subunit has in vivo fitness consequences. PLoS ONE 7:e32456

  • van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Micro 11:435–442

    Article  Google Scholar 

  • Waugh DS, Pace NR (1990) Complementation of an RNase P RNA (rnpB) gene deletion in Escherichia coli by homologous genes from distantly related eubacteria. J Bacteriol 172:6316–6322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weber C, Hartig A, Hartmann RK, Rossmanith W (2014) Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms. PLoS Genet 10:e1004506

    Article  PubMed Central  PubMed  Google Scholar 

  • Wegscheid B, Hartmann RK (2007) In vivo and in vitro investigation of bacterial type B RNase P interaction with tRNA 3′-CCA. Nucleic Acids Res 35:2060–2073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wegscheid B, Condon C, Hartmann RK (2006) Type A and B RNase P RNAs are interchangeable in vivo despite substantial biophysical differences. EMBO Rep 7:411–417

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan W, Francklyn C (1994) Cytosine 73 is a discriminator nucleotide in vivo for histidyl-tRNA in Escherichia coli. J Biol Chem 269:10022–10027

    CAS  PubMed  Google Scholar 

  • Yang IV, Chen E, Hasseman JP, Liang W, Frank BC, Wang S, Sharov V, Saeed AI, White J, Li J (2002) Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol 3(1–0062):12

    Google Scholar 

Download references

Acknowledgments

This study was supported by NASA Grant NNX08AE90G and NSF Grant 9981394, as well as by funds from the Blakeslee Fund at Smith College. We thank Chris White-Ziegler, Laura Katz, and Adam Hall for comments on earlier versions of this manuscript. We thank Chris White-Ziegler, Scott Edmands, Adam Hall, and Wen Li for technical assistance. We are especially grateful to Dr. Norman Pace for permission to reproduce the structures shown in Figure 1, and for his thoughtful reading of this work.  We also thank our two anonymous reviewers for their helpful comments which greatly improved the manuscript. 

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Dorit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loveland, J.L., Rice, J., Turrini, P.C.G. et al. Essential is Not Irreplaceable: Fitness Dynamics of Experimental E. coli RNase P RNA Heterologous Replacement. J Mol Evol 79, 143–152 (2014). https://doi.org/10.1007/s00239-014-9646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-014-9646-8

Keywords

Navigation