Skip to main content

Advertisement

Log in

The role and management of mineral supplementation in plastic surgery patients: a comprehensive review

  • Review
  • Published:
European Journal of Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Mineral deficiencies can predispose patients to surgical complications and poor wound healing. Moreover, it is known that a significant number of patients are on vitamin- and mineral supplements. Given the importance of nutritional status for any patient, a plastic surgeon should be aware about the role and management minerals for their patients, and how they can affect surgical outcomes.

Methods

Literature on minerals was reviewed and summarized to include biological functions, surgical relevance, and effects of deficiency. Scientific evidence was used to collate advice to plastic surgeons regarding mineral management in the perioperative setting.

Results

Minerals play fundamental physiological roles, some of which contribute to postoperative wound healing and immune response. Screening and supplementation for specific minerals can be considered based on patient characteristics, nutritional and medical history, and history of bariatric surgery.

Conclusions

Plastic surgeons should have open discussions with patients to learn about which mineral supplements they take and whether they are at risk for deficiency. This comprehensive review discusses and provide guidance surrounding chromium, copper, iron, magnesium, selenium, and zinc in the context of plastic surgery.

Level of Evidence

Not ratable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali AAH (2023) Overview of the vital roles of macro minerals in the human body. J Trace Elem Minerals. ;4

  2. Costa-Pinto R, Gantner D (2020) Macronutrients, minerals, vitamins and energy. Anaesth Intensive Care Med 21(3):157–161

    Article  Google Scholar 

  3. Knackstedt R, Oliver J, Gatherwright J (2020) Evidence-based Perioperative Nutrition recommendations: optimizing results and minimizing risks. Plast Reconstr Surg Aug 146(2):423–435. https://doi.org/10.1097/PRS.0000000000007004

    Article  CAS  Google Scholar 

  4. Afzal S, Quinones GA (2022) Chromium Deficiency. StatPearls

  5. Lukaski HC, Bolonchuk WW, Siders WA, Milne DB (1996) Chromium supplementation and resistance training: effects on body composition, strength, and trace element status of men. Am J Clin Nutr Jun 63(6):954–965. https://doi.org/10.1093/ajcn/63.6.954

    Article  CAS  Google Scholar 

  6. Krzizek EC, Brix JM, Stöckl A, Parzer V, Ludvik B (2021) Prevalence of Micronutrient Deficiency after bariatric surgery. Obes Facts 14(2):197–204. https://doi.org/10.1159/000514847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mechanick JI, Apovian C, Brethauer S et al (2020) Clinical practice guidelines for the Perioperative Nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures – 2019 update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, the Obesity Society, American Society for Metabolic and Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Obes (Silver Spring) Apr 28(4):O1–O58. https://doi.org/10.1002/oby.22719

    Article  Google Scholar 

  8. Griffith DP, Liff DA, Ziegler TR, Esper GJ, Winton EF (2009) Acquired copper deficiency: a potentially serious and preventable complication following gastric bypass surgery. Obes (Silver Spring) Apr 17(4):827–831. https://doi.org/10.1038/oby.2008.614

    Article  CAS  Google Scholar 

  9. Tahir N, Ashraf A, Waqar SHB et al (2022) Copper deficiency, a rare but correctable cause of pancytopenia: a review of literature. Expert Rev Hematol Nov 15(11):999–1008. https://doi.org/10.1080/17474086.2022.2142113

    Article  CAS  Google Scholar 

  10. Agha-Mohammadi S, Hurwitz DJ (2010) Enhanced recovery after body-contouring surgery: reducing surgical complication rates by optimizing nutrition. Aesthetic Plast Surg Oct 34(5):617–625. https://doi.org/10.1007/s00266-010-9522-x

    Article  Google Scholar 

  11. Jaiser SR, Winston GP (2010) Copper deficiency myelopathy. J Neurol Jun 257(6):869–881. https://doi.org/10.1007/s00415-010-5511-x

    Article  CAS  Google Scholar 

  12. Montano-Pedroso JC, Garcia EB, Omonte IR, Rocha MG, Ferreira LM (2013) Hematological variables and iron status in abdominoplasty after bariatric surgery. Obes Surg Jan 23(1):7–16. https://doi.org/10.1007/s11695-012-0720-2

    Article  Google Scholar 

  13. Nelson JA, Fischer JP, Grover R et al (2014) The impact of anemia on microsurgical breast reconstruction complications and outcomes. Microsurgery May 34(4):261–270. https://doi.org/10.1002/micr.22202

    Article  Google Scholar 

  14. Serati M, Cetin I, Athanasiou S (2019) Recovery after surgery: do not forget to check iron status before. Int J Womens Health 11:481–487. https://doi.org/10.2147/IJWH.S213822

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shander A, Knight K, Thurer R, Adamson J, Spence R (2004) Prevalence and outcomes of anemia in surgery: a systematic review of the literature. Am J Med Apr 05(Suppl 7A):58S–69S. https://doi.org/10.1016/j.amjmed.2003.12.013

    Article  Google Scholar 

  16. Musallam KM, Tamim HM, Richards T et al (2011) Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet. Oct 15. ;378(9800):1396 – 407. https://doi.org/10.1016/S0140-6736(11)61381-0

  17. Sequeira SB, Quinlan ND, Althoff AD, Werner BC (2021) Iron Deficiency Anemia is Associated with increased early postoperative Surgical and Medical complications following total hip arthroplasty. J Arthroplasty Mar 36(3):1023–1028. https://doi.org/10.1016/j.arth.2020.09.043

    Article  Google Scholar 

  18. Mathew KK, Vakharia RM, Salem HS et al (2020) Is Iron Deficiency Anemia a risk factor for poorer outcomes in primary total knee arthroplasty? J Arthroplasty May 35(5):1252–1256. https://doi.org/10.1016/j.arth.2020.01.021

    Article  Google Scholar 

  19. Hamaway S, Hadid B, Vakharia RM et al (2022) The association of iron deficiency anemia and perioperative complications following revision total knee arthroplasty. Arthroplasty Jul 27(1):34. https://doi.org/10.1186/s42836-022-00129-4

    Article  CAS  Google Scholar 

  20. Polisetty T, Cannon D, Grewal G, Vakharia RM, Vegas A, Levy JC (2023) Iron deficiency anemia is associated with increased medical and implant-related complications and length of stay for patients undergoing total shoulder arthroplasty. J Shoulder Elb Surg May 32(5):e200–e205. https://doi.org/10.1016/j.jse.2022.11.005

    Article  Google Scholar 

  21. Clevenger B, Richards T (2015) Pre-operative anaemia. Anaesth Jan 70 Suppl 1:20 – 8, e6-8. https://doi.org/10.1111/anae.12918

  22. Massenburg B, Sanati-Mehrizy P, Ranson W, Ingargiola M, Taub P (2017) Abstract: Anemia and Plastic Surgical outcomes. Plast Reconstr Surg Global Open 5(9):101–102

    Article  Google Scholar 

  23. Muñoz M, Acheson AG, Auerbach M et al (2017) International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesth Feb 72(2):233–247. https://doi.org/10.1111/anae.13773

    Article  CAS  Google Scholar 

  24. Tibi P, McClure RS, Huang J et al (2021) STS/SCA/AmSECT/SABM update to the clinical practice guidelines on patient blood management. J Cardiothorac Vasc Anesth Sep 35(9):2569–2591. https://doi.org/10.1053/j.jvca.2021.03.011

    Article  Google Scholar 

  25. Munting KE, Klein AA (Jan 2019) Optimisation of pre-operative anaemia in patients before elective major surgery - why, who, when and how? Anaesthesia. 74(Suppl 1):49–57. https://doi.org/10.1111/anae.14466

  26. Barney J, Moosavi L, Iron (2023) StatPearls

  27. Triphaus C, Judd L, Glaser P et al (2021) Effectiveness of Preoperative Iron Supplementation in Major Surgical patients with Iron Deficiency: a prospective observational study. Ann Surg Sep 01(3):e212–e219. https://doi.org/10.1097/SLA.0000000000003643

    Article  Google Scholar 

  28. Patel JJ, Mundi MS, Hurt RT, Wolfe B, Martindale RG (2017) Micronutrient deficiencies after bariatric surgery: an emphasis on vitamins and Trace minerals [Formula: see text]. Nutr Clin Pract Aug 32(4):471–480. https://doi.org/10.1177/0884533617712226

    Article  CAS  Google Scholar 

  29. Wolfe BM, Kvach E, Eckel RH (2016) Treatment of obesity: weight loss and bariatric surgery. Circ Res May 27(11):1844–1855. https://doi.org/10.1161/CIRCRESAHA.116.307591

    Article  CAS  Google Scholar 

  30. Montano-Pedroso JC, Bueno Garcia E, Alcântara Rodrigues de Moraes M, Francescato Veiga D, Masako Ferreira L (2018) Intravenous iron sucrose versus oral iron administration for the postoperative treatment of post-bariatric abdominoplasty anaemia: an open-label, randomised, superiority trial in Brazil. Lancet Haematol Jul 5(7):e310–e320. https://doi.org/10.1016/S2352-3026(18)30071-1

    Article  Google Scholar 

  31. Vaxman F, Olender S, Lambert A, Nisand G, Grenier JF (1996) Can the wound healing process be improved by vitamin supplementation? Experimental study on humans. Eur Surg Res 28(4):306–314. https://doi.org/10.1159/000129471

    Article  CAS  PubMed  Google Scholar 

  32. Saeg F, Orazi R, Bowers GM, Janis JE (2021) Evidence-based nutritional interventions in Wound Care. Plast Reconstr Surg Jul 01(1):226–238. https://doi.org/10.1097/PRS.0000000000008061

    Article  CAS  Google Scholar 

  33. Chen LR, Yang BS, Chang CN, Yu CM, Chen KH (2018) Additional vitamin and Mineral support for patients with severe Burns: a nationwide experience from a Catastrophic Color-Dust Explosion Event in Taiwan. Nutrients Nov 16(11). https://doi.org/10.3390/nu10111782

  34. Afzali H, Jafari Kashi AH, Momen-Heravi M et al (2019) The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen May 27(3):277–284. https://doi.org/10.1111/wrr.12701

    Article  Google Scholar 

  35. Pastorfide GB, Gorgonio NM, Ganzon AR, Alberto RM (1989) Zinc chloride spray–magnesium hydroxide ointment dual topical regimen in the treatment of obstetric and gynecologic incisional wounds. Clin Ther 11(2):258–263

    CAS  PubMed  Google Scholar 

  36. Razzaghi R, Pidar F, Momen-Heravi M, Bahmani F, Akbari H, Asemi Z (2018) Magnesium supplementation and the effects on Wound Healing and Metabolic Status in patients with Diabetic Foot Ulcer: a Randomized, Double-Blind, placebo-controlled trial. Biol Trace Elem Res Feb 181(2):207–215. https://doi.org/10.1007/s12011-017-1056-5

    Article  CAS  Google Scholar 

  37. Gragossian A, Bashir K, Bhutta B, Friede R (2022) Hypomagnesemia. StatPearls

  38. Agha-Mohammadi S, Hurwitz DJ (2008) Nutritional deficiency of post-bariatric surgery body contouring patients: what every plastic surgeon should know. Plast Reconstr Surg Aug 122(2):604–613. https://doi.org/10.1097/PRS.0b013e31817d6023

    Article  CAS  Google Scholar 

  39. Madan AK, Orth WS, Tichansky DS, Ternovits CA (2006) Vitamin and trace mineral levels after laparoscopic gastric bypass. Obes Surg May 16(5):603–606. https://doi.org/10.1381/096089206776945057

    Article  Google Scholar 

  40. Nessel T, Gupta V, Selenium (2023) StatPearls

  41. Selenium, Mount Sinai Health Library (2023) Accessed 11/21/2023. :text=Anticoagulants%20and%20antiplatelet%20drugs%20(blood,Heparin. https://www.mountsinai.org/health-library/supplement/selenium#:~

  42. Selenium - Uses S, Effects, More (2023) WebMD. Accessed 11/21/2023, https://www.webmd.com/vitamins/ai/ingredientmono-1003/selenium

  43. Yoshimoto N, Itoh T, Inaba Y, Ishii H, Yamamoto K (2013) Structural basis for inhibition of carboxypeptidase B by selenium-containing inhibitor: selenium coordinates to zinc in enzyme. J Med Chem Oct 10(19):7527–7535. https://doi.org/10.1021/jm400816v

    Article  CAS  Google Scholar 

  44. Yoshimoto N, Sasaki T, Sugimoto K, Ishii H, Yamamoto K (2012) Design and characterization of a selenium-containing inhibitor of activated thrombin-activatable fibrinolysis inhibitor (TAFIa), a zinc-containing metalloprotease. J Med Chem Sep 13(17):7696–7705. https://doi.org/10.1021/jm300735t

    Article  CAS  Google Scholar 

  45. Zbikowska HM, Wachowicz B, Krajewski T (1999) Selenium compounds inhibit the biological activity of blood platelets. Platelets 10(2–3):185–190. https://doi.org/10.1080/09537109976275

    Article  CAS  PubMed  Google Scholar 

  46. Rahm D (2005) Perioperative nutrition and nutritional supplements. Plast Surg Nurs. ;25(1):21 – 8; quiz 29–30. https://doi.org/10.1097/00006527-200501000-00004

  47. Vitagliano T, Garieri P, Lascala L et al (2023) Preparing patients for Cosmetic surgery and aesthetic procedures: ensuring an Optimal Nutritional Status for successful results. Nutrients Jan 10(2). https://doi.org/10.3390/nu15020352

  48. Agren MS, Franzén L (1990) Influence of zinc deficiency on breaking strength of 3-week-old skin incisions in the rat. Acta Chir Scand Oct 156(10):667–670

    CAS  Google Scholar 

  49. Eriksson G (1986) Comparison of two occlusive bandages in the treatment of venous leg ulcers. Br J Dermatol Feb 114(2):227–230. https://doi.org/10.1111/j.1365-2133.1986.tb02801.x

    Article  MathSciNet  CAS  Google Scholar 

  50. Barcia PJ (1970) Lack of acceleration of healing with zinc sulfate. Ann Surg Dec 172(6):1048–1050. https://doi.org/10.1097/00000658-197012000-00019

    Article  CAS  Google Scholar 

  51. Lin PH, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J (2017) Zinc in Wound Healing Modulation. Nutrients Dec 24(1). https://doi.org/10.3390/nu10010016

  52. Rech M, To L, Tovbin A, Smoot T, Mlynarek M (2014) Heavy metal in the intensive care unit: a review of current literature on trace element supplementation in critically ill patients. Nutr Clin Pract Feb 29(1):78–89. https://doi.org/10.1177/0884533613515724

    Article  CAS  Google Scholar 

  53. Kurmis R, Greenwood J, Aromataris E (2016) Trace element supplementation following severe burn Injury: a systematic review and Meta-analysis. J Burn Care Res 37(3):143–159. https://doi.org/10.1097/BCR.0000000000000259

    Article  PubMed  Google Scholar 

  54. Adjepong M, Agbenorku P, Brown P, Oduro I (2016) The role of antioxidant micronutrients in the rate of recovery of burn patients: a systematic review. Burns Trauma 4:18. https://doi.org/10.1186/s41038-016-0044-x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mirastschijski U, Martin A, Jorgensen LN, Sampson B, Ågren MS (2013) Zinc, copper, and selenium tissue levels and their relation to subcutaneous abscess, minor surgery, and wound healing in humans. Biol Trace Elem Res Jun 153(1–3):76–83. https://doi.org/10.1007/s12011-013-9658-z

    Article  CAS  Google Scholar 

  56. Berger MM, Baines M, Raffoul W et al (2007) Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace element concentrations. Am J Clin Nutr May 85(5):1293–1300. https://doi.org/10.1093/ajcn/85.5.1293

    Article  CAS  Google Scholar 

  57. van Anholt RD, Sobotka L, Meijer EP et al (2010) Specific nutritional support accelerates pressure ulcer healing and reduces wound care intensity in non-malnourished patients. Nutr Sep 26(9):867–872. https://doi.org/10.1016/j.nut.2010.05.009

    Article  Google Scholar 

  58. Frías Soriano L, Lage Vázquez MA, Maristany CP, Xandri Graupera JM, Wouters-Wesseling W, Wagenaar L (2004) The effectiveness of oral nutritional supplementation in the healing of pressure ulcers. J Wound Care Sep 13(8):319–322. https://doi.org/10.12968/jowc.2004.13.8.26654

    Article  Google Scholar 

  59. Cereda E, Gini A, Pedrolli C, Vanotti A (2009) Disease-specific, versus standard, nutritional support for the treatment of pressure ulcers in institutionalized older adults: a randomized controlled trial. J Am Geriatr Soc Aug 57(8):1395–1402. https://doi.org/10.1111/j.1532-5415.2009.02351.x

    Article  Google Scholar 

  60. Houwing RH, Rozendaal M, Wouters-Wesseling W, Beulens JW, Buskens E, Haalboom JR (2003) A randomised, double-blind assessment of the effect of nutritional supplementation on the prevention of pressure ulcers in hip-fracture patients. Clin Nutr Aug 22(4):401–405. https://doi.org/10.1016/s0261-5614(03)00039-6

    Article  CAS  Google Scholar 

  61. Strömberg HE, Agren MS (1984) Topical zinc oxide treatment improves arterial and venous leg ulcers. Br J Dermatol Oct 111(4):461–468. https://doi.org/10.1111/j.1365-2133.1984.tb06610.x

    Article  Google Scholar 

  62. Hallböök T, Lanner E (1972) Serum-zinc and healing of venous leg ulcers. Lancet. Oct 14. ;2(7781):780-2. https://doi.org/10.1016/s0140-6736(72)92143-5

  63. Husain SL (1969) Oral zinc sulphate in leg ulcers. Lancet May 31(7605):1069–1071. https://doi.org/10.1016/s0140-6736(69)91706-1

    Article  Google Scholar 

  64. Odgaard KM, Anderen NB, Munk C, Wessel I, Andersen JR (2019) SUN-PO310: a Randomized Controlled Clinical Trial of pre- and postoperative supplementation with zinc, Vitamin C, arginine and multivitamin in patients operated for Head and Neck Cancer. Clin Nutr 38(1). https://doi.org/10.1016/S0261-5614(19)32940-1

  65. Pories WJ, Henzel JH, Rob CG, Strain WH (1967) Acceleration of healing with zinc sulfate. Ann Surg Mar 165(3):432–436. https://doi.org/10.1097/00000658-196703000-00015

    Article  CAS  Google Scholar 

  66. Al-Kaisy AA, Salih Sahib A, Al-Biati HA (2006) Effect of zinc supplement in the prognosis of burn patients in Iraq. Ann Burns Fire Disasters Sep 30(3):115–122

    Google Scholar 

  67. Sahib AS, Al-Jawad FH, Alkaisy AA (2010) Effect of antioxidants on the incidence of wound infection in burn patients. Ann Burns Fire Disasters Dec 31(4):199–205

    Google Scholar 

  68. Momen-Heravi M, Barahimi E, Razzaghi R, Bahmani F, Gilasi HR, Asemi Z (2017) The effects of zinc supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen May 25(3):512–520. https://doi.org/10.1111/wrr.12537

    Article  Google Scholar 

  69. Barbosa E, Faintuch J, Machado Moreira EA et al (2009) Supplementation of vitamin E, vitamin C, and zinc attenuates oxidative stress in burned children: a randomized, double-blind, placebo-controlled pilot study. J Burn Care Res 30(5):859–866. https://doi.org/10.1097/BCR.0b013e3181b487a8

    Article  PubMed  Google Scholar 

  70. Kogan S, Sood A, Garnick MS (2017) Zinc and Wound Healing: a review of Zinc Physiology and clinical applications. Wounds Apr 29(4):102–106

    Google Scholar 

  71. Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME (2020) Recent aspects of the effects of zinc on human health. Arch Toxicol May 94(5):1443–1460. https://doi.org/10.1007/s00204-020-02702-9

    Article  CAS  Google Scholar 

  72. Wernick B, Nahirniak P, Stawicki S (2022) Impaired Wound Healing. StatPearls

  73. Wright JA, Richards T, Srai SK (2014) The role of iron in the skin and cutaneous wound healing. Front Pharmacol 5:156. https://doi.org/10.3389/fphar.2014.00156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bird JK, Murphy RA, Ciappio ED, McBurney MI (2017) Risk of Deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients Jun 24(7). https://doi.org/10.3390/nu9070655

  75. Sivaprasad M, Shalini T, Reddy PY et al (2019) Prevalence of vitamin deficiencies in an apparently healthy urban adult population: assessed by subclinical status and dietary intakes. Nutrition 63–64:106–113. https://doi.org/10.1016/j.nut.2019.01.017

    Article  CAS  PubMed  Google Scholar 

  76. Dattola A, Silvestri M, Bennardo L et al (2020) Role of vitamins in skin health: a systematic review. Curr Nutr Rep Sep 9(3):226–235. https://doi.org/10.1007/s13668-020-00322-4

    Article  CAS  Google Scholar 

  77. Naghshineh N, O’Brien Coon D, McTigue K, Courcoulas AP, Fernstrom M, Rubin JP (2010) Nutritional assessment of bariatric surgery patients presenting for plastic surgery: a prospective analysis. Plast Reconstr Surg Aug 126(2):602–610. https://doi.org/10.1097/PRS.0b013e3181de2473

    Article  CAS  Google Scholar 

  78. Gletsu-Miller N, Wright BN (2013) Mineral malnutrition following bariatric surgery. Adv Nutr Sep 01(5):506–517. https://doi.org/10.3945/an.113.004341

    Article  CAS  Google Scholar 

  79. Toninello P, Montanari A, Bassetto F, Vindigni V, Paoli A (2021) Nutritional support for bariatric surgery patients: the skin beyond the Fat. Nutrients May 06(5). https://doi.org/10.3390/nu13051565

  80. Ho JW, Wu AH, Lee MW et al (2015) Malnutrition risk predicts surgical outcomes in patients undergoing gastrointestinal operations: results of a prospective study. Clin Nutr Aug 34(4):679–684. https://doi.org/10.1016/j.clnu.2014.07.012

    Article  Google Scholar 

  81. Hill GL, Blackett RL, Pickford I et al (1977) Malnutrition in surgical patients. An unrecognised problem. Lancet Mar 26(8013):689–692. https://doi.org/10.1016/s0140-6736(77)92127-4

    Article  Google Scholar 

  82. Roy M, Perry JA, Cross KM (2018) Nutrition and the Plastic Surgeon: possible interventions and practice considerations. Plast Reconstr Surg Glob Open Aug 6(8):e1704. https://doi.org/10.1097/GOX.0000000000001704

    Article  Google Scholar 

  83. Correia MI, Waitzberg DL (2003) The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr Jun 22(3):235–239. https://doi.org/10.1016/s0261-5614(02)00215-7

    Article  Google Scholar 

  84. Roberson ML, Egberg MD, Strassle PD, Phillips MR (2021) Measuring malnutrition and its impact on pediatric surgery outcomes: a NSQIP-P analysis. J Pediatr Surg Mar 56(3):439–445. https://doi.org/10.1016/j.jpedsurg.2020.10.001

    Article  Google Scholar 

  85. Le B, Flier S, Madill J et al (2023) Malnutrition risk, outcomes, and costs among older adults undergoing elective surgical procedures: a retrospective cohort study. Nutr Clin Pract Oct 38(5):1045–1062. https://doi.org/10.1002/ncp.11043

    Article  Google Scholar 

  86. Sungurtekin H, Sungurtekin U, Balci C, Zencir M, Erdem E (2004) The influence of nutritional status on complications after major intraabdominal surgery. J Am Coll Nutr Jun 23(3):227–232. https://doi.org/10.1080/07315724.2004.10719365

    Article  Google Scholar 

  87. Castro-Quezada I, Román-Viñas B, Serra-Majem L (2014) The Mediterranean diet and nutritional adequacy: a review. Nutrients Jan 03 6(1):231–248. https://doi.org/10.3390/nu6010231

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Mehrzad.

Ethics declarations

Ethics approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranwal, N., Gong, J.H., Arnoff, T.E. et al. The role and management of mineral supplementation in plastic surgery patients: a comprehensive review. Eur J Plast Surg 47, 29 (2024). https://doi.org/10.1007/s00238-024-02183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00238-024-02183-4

Keywords

Navigation