Skip to main content

Advertisement

Log in

Evaluating suturing methods for surgical repair of muscle belly lacerations: a scoping review of biomechanical studies

  • Review
  • Published:
European Journal of Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Surgical repair of muscle lacerations is the standard of care to restore function. Compared to non-surgically repaired lacerations, surgical repairs have been shown to heal faster and have higher strength return and lower incidence of hematomas. Multiple techniques have been reported to repair muscle lacerations. There are many factors to consider in choosing a technique for muscle belly repair including scar tissue formation, length of immobilization, strength of repair, and suture pullout. An ideal repair method has not yet been clearly identified; therefore, the purpose of this review is to evaluate the existing literature on various repair methods and the methods used to test them.

Methods

Using the PRISMA-ScR framework, a scoping review was performed to identify biomechanical studies that examined the strength and efficacy of muscle belly repair techniques. PubMed, Web of Science, and Scopus were searched to locate relevant studies.

Results

Nine original studies which met inclusion criteria were selected for final review. Six studies evaluated specific suture techniques, while the remaining three studies evaluated, inclusion of epimysium in the repair, repair of the epimysium versus perimysium, and porcine versus bovine skeletal muscle biomechanical properties. While the six studies evaluating suture techniques tested overlapping suture types, they varied in preload and peak load values and the type of suture used, yielding heterogenous data. The compiled data did not support one method being the optimal repair choice.

Conclusions

Existing literature evaluating the mechanics of muscle repair is limited by a lack of standardization. The included studies suggest that using sutures which incorporate the epimysium or using a combination of sutures that anchor the core of the muscle belly and encompass the perimeter may yield more robust repairs than other techniques. However, further research using comparable experimental conditions is necessary to identify an ideal muscle belly repair technique.

Level of evidence: Not gradable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this review are included in the paper itself and in the articles referenced therein.

References

  1. Oliva F, Via AG, Kiritsi O, Foti C, Maffulli N (2013) Surgical repair of muscle laceration: biomechanical properties at 6 years follow-up. Muscles Ligaments Tendons J 3(4):313–317

    Article  PubMed  Google Scholar 

  2. Castillo AC, Kaltwasser K, Morris R et al (2021) Comparing 3 suture techniques after muscle laceration repair. HAND 16(1):67–72. https://doi.org/10.1177/1558944719837021

    Article  PubMed  Google Scholar 

  3. Menetrey J, Kasemkijwattana C, Fu FH, Moreland MS, Huard J (1999) Suturing versus immobilization of a muscle laceration. Am J Sports Med 27(2):222–229. https://doi.org/10.1177/03635465990270021801

    Article  PubMed  CAS  Google Scholar 

  4. Tricco AC, Lillie E, Zarin W et al (2018) PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 169(7):467–473. https://doi.org/10.7326/M18-0850

    Article  PubMed  Google Scholar 

  5. Kragh JF, Svoboda SJ, Wenke JC, Ward JA, Walters TJ (2005) Epimysium and perimysium in suturing in skeletal muscle lacerations. J Trauma 59(1):209–212. https://doi.org/10.1097/01.ta.0000171530.11588.70

    Article  PubMed  Google Scholar 

  6. Kragh JF, Svoboda SJ, Wenke JC, Brooks DE, Bice TG, Walters TJ (2005) The role of epimysium in suturing skeletal muscle lacerations. J Am Coll Surg 200(1):38–44. https://doi.org/10.1016/j.jamcollsurg.2004.09.009

    Article  PubMed  Google Scholar 

  7. Kragh JF, Svoboda SJ, Wenke JC, Ward JA, Walters TJ (2005) Passive biomechanical properties of sutured mammalian muscle lacerations. J Invest Surg 18(1):19–23. https://doi.org/10.1080/08941930590905170

    Article  PubMed  Google Scholar 

  8. He M, Sebastin SJ, Gan AWT, Lim AYT, Chong AKS (2014) Biomechanical comparison of different suturing techniques in rabbit medial gastrocnemius muscle laceration repair. Ann Plast Surg 73(3):333–335. https://doi.org/10.1097/SAP.0b013e31827ae9b0

    Article  PubMed  CAS  Google Scholar 

  9. Goyal KS, Speeckaert AL, Goitz RJ, Tavana ML (2019) A comparison of barbed suture versus traditional techniques for muscle belly repair. Hand N Y N 14(1):91–94. https://doi.org/10.1177/1558944718798853

    Article  Google Scholar 

  10. Chance JR, Krgh JK, Agrawal CM, Basamania CJ (2005) Pullout forces of sutures in muscle lacerations. Orthopedics 28(10):1187–1190. https://doi.org/10.3928/0147-7447-20051001-16

    Article  PubMed  Google Scholar 

  11. Kragh JF, Svoboda SJ, Wenke JC, Ward JA, Walters TJ. Suturing of lacerations of skeletal muscle. J Bone Joint Surg Br. 2005;87-B(9):1303–1305. doi:https://doi.org/10.1302/0301-620X.87B9.15728

  12. Lionello G, Fognani R, Baleani M, Sudanese A, Toni A (2015) Suturing the myotendinous junction in total hip arthroplasty: a biomechanical comparison of different stitching techniques. Clin Biomech 30(10):1077–1082. https://doi.org/10.1016/j.clinbiomech.2015.09.003

    Article  Google Scholar 

  13. Julien TP, Mudgal CS (2011) Anchor suture technique for muscle belly repair. Tech Hand Up Extrem Surg 15(4):257–259. https://doi.org/10.1097/BTH.0b013e318220e75a

    Article  PubMed  Google Scholar 

  14. Green CJ, Wang A, Henderson J, Ebert J, Edwards P (2020) Successful surgical repair of a full-thickness intramuscular muscle belly rupture of pectoralis major. JSES Int 4(1):91–94. https://doi.org/10.1016/j.jses.2019.10.006

    Article  PubMed  Google Scholar 

  15. Järvinen MJ, Lehto MUK (1993) The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med 15(2):78–89. https://doi.org/10.2165/00007256-199315020-00002

    Article  PubMed  Google Scholar 

  16. Kannus P (2000) Immobilization or early mobilization after an acute soft-tissue injury? Phys Sportsmed 28(3):55–63. https://doi.org/10.3810/psm.2000.03.775

    Article  PubMed  CAS  Google Scholar 

  17. Almekinders LC (1991) Results of surgical repair versus splinting of experimentally transected muscle. J Orthop Trauma 5(2):173–176. https://doi.org/10.1097/00005131-199105020-00009

    Article  PubMed  CAS  Google Scholar 

  18. Maddox GE, Ludwig J, Craig ER et al (2015) Flexor tendon repair with a knotless, bidirectional barbed suture: an in vivo biomechanical analysis. J Hand Surg 40(5):963–968. https://doi.org/10.1016/j.jhsa.2015.01.013

    Article  Google Scholar 

  19. Çolak Ö, Kankaya Y, Sungur N et al (2019) Barbed sutures versus conventional tenorrhaphy in flexor tendon repair: an ex vivo biomechanical analysis. Arch Plast Surg 46(03):228–234. https://doi.org/10.5999/aps.2018.00962

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shah A, Rowlands M, Au A (2015) Barbed sutures and tendon repair—a review. HAND 10(1):6–15. https://doi.org/10.1007/s11552-014-9669-z

    Article  PubMed  Google Scholar 

  21. Shin JY, Kim JS, Roh SG, Lee NH, Yang KM (2016) Biomechanical analysis of barbed suture in flexor tendon repair versus conventional method: systematic review and meta-analysis. Plast Reconstr Surg 138(4):666e–674e. https://doi.org/10.1097/PRS.0000000000002573

    Article  PubMed  CAS  Google Scholar 

  22. Huang Y, Cadet ER, King MW, Cole JH (2022) Comparison of the mechanical properties and anchoring performance of polyvinylidene fluoride and polypropylene barbed sutures for tendon repair. J Biomed Mater Res B Appl Biomater 110(10):2258–2265. https://doi.org/10.1002/jbm.b.35074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Miller B, Dodds SD, deMars A, Zagoreas N, Waitayawinyu T, Trumble TE (2007) Flexor tendon repairs: the impact of fiberwire on grasping and locking core sutures. J Hand Surg 32(5):591–596. https://doi.org/10.1016/j.jhsa.2007.03.003

    Article  Google Scholar 

  24. Kim HM, Nelson G, Thomopoulos S, Silva MJ, Das R, Gelberman RH (2010) Technical and biological modifications for enhanced flexor tendon repair. J Hand Surg 35(6):1031–1037. https://doi.org/10.1016/j.jhsa.2009.12.044

    Article  Google Scholar 

  25. Rawson S, Cartmell S, Wong J (2013) Suture techniques for tendon repair; a comparative review. Muscles Ligaments Tendons J 3(3):220–228

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gelberman RH, Boyer MI, Brodt MD, Winters SC, Silva MJ. The effect of gap formation at the repair site on the strength and excursion of Intrasynovial flexor tendons. An experimental study on the early stages of tendon-healing in dogs*: J Bone Jt Surg. 1999;81(7):975–982. doi:https://doi.org/10.2106/00004623-199907000-00010

  27. Terada, Shinichiro Takayama, Harumo N. Muscle repair after a transsection injury with development of a gap: an experimental study in rats. Scand J Plast Reconstr Surg Hand Surg. 2001;35(3):233–238. doi:https://doi.org/10.1080/028443101750523131

  28. Gardner T, Kenter K, Li Y (2020) Fibrosis following acute skeletal muscle injury: mitigation and reversal potential in the clinic. J Sports Med 2020:1–7. https://doi.org/10.1155/2020/7059057

    Article  Google Scholar 

  29. Maquirriain J (2011) Achilles tendon rupture: avoiding tendon lengthening during surgical repair and rehabilitation. Yale J Biol Med 84(3):289–300

    PubMed  PubMed Central  Google Scholar 

  30. Fischer B, Kurz S, Höch A, Schleifenbaum S (2020) The influence of different sample preparation on mechanical properties of human iliotibial tract. Sci Rep 10(1):14836. https://doi.org/10.1038/s41598-020-71790-5

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR (2017) What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review Clin Orthop 475(10):2412–2426. https://doi.org/10.1007/s11999-017-5330-9

    Article  PubMed  Google Scholar 

  32. Hammer N, Lingslebe U, Aust G, Milani TL, Hädrich C, Steinke H (2012) Ultimate stress and age-dependent deformation characteristics of the iliotibial tract. J Mech Behav Biomed Mater 16:81–86. https://doi.org/10.1016/j.jmbbm.2012.04.025

    Article  PubMed  Google Scholar 

  33. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLOS Med 18(3):e1003583. https://doi.org/10.1371/journal.pmed.1003583

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Wang.

Ethics declarations

Ethical approval

Ethical approval was not required for this study.

Consent to participate

Consent to participate was not required for this study.

Consent for publication

Consent to publish was not required for this study.

Competing interests

Avril Stulginski, Medha Vallurupalli, Mikhail Pakvasa, Cathy J. Tang, Eric D. Wang, and Amber R. Leis declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. PubMed search

Query

(muscle belly repair OR muscle laceration repair) AND technique AND (biomechanical testing OR tensile) NOT shoulder

Details

((((“muscle s”[All Fields] OR “muscles”[MeSH Terms] OR “muscles”[All Fields] OR “muscle”[All Fields]) AND (“bellies”[All Fields] OR “belly”[All Fields]) AND (“repairability”[All Fields] OR “repairable”[All Fields] OR “repaire”[All Fields] OR “repaired”[All Fields] OR “repairment”[All Fields] OR “wound healing”[MeSH Terms] OR (“wound”[All Fields] AND “healing”[All Fields]) OR “wound healing”[All Fields] OR “repair”[All Fields] OR “repairing”[All Fields] OR “repairs”[All Fields])) OR ((“muscle s”[All Fields] OR “muscles”[MeSH Terms] OR “muscles”[All Fields] OR “muscle”[All Fields]) AND (“lacerations”[MeSH Terms] OR “lacerations”[All Fields] OR “lacerate”[All Fields] OR “lacerated”[All Fields] OR “lacerating”[All Fields] OR “laceration”[All Fields]) AND (“repairability”[All Fields] OR “repairable”[All Fields] OR “repaire”[All Fields] OR “repaired”[All Fields] OR “repairment”[All Fields] OR “wound healing”[MeSH Terms] OR (“wound”[All Fields] AND “healing”[All Fields]) OR “wound healing”[All Fields] OR “repair”[All Fields] OR “repairing”[All Fields] OR “repairs”[All Fields]))) AND (“methods”[MeSH Terms] OR “methods”[All Fields] OR “technique”[All Fields] OR “methods”[MeSH Subheading] OR “techniques”[All Fields] OR “technique s”[All Fields]) AND (((“biomechanical phenomena”[MeSH Terms] OR (“biomechanical”[All Fields] AND “phenomena”[All Fields]) OR “biomechanical phenomena”[All Fields] OR “biomechanic”[All Fields] OR “biomechanics”[All Fields] OR “biomechanical”[All Fields] OR “biomechanically”[All Fields]) AND (“test s”[All Fields] OR “tested”[All Fields] OR “testing”[All Fields] OR “testings”[All Fields] OR “tests”[All Fields])) OR (“tensil”[All Fields] OR “tensile”[All Fields]))) NOT (“shoulder”[MeSH Terms] OR “shoulder”[All Fields] OR “shoulders”[All Fields] OR “shoulder s”[All Fields])

Translation

muscle: “muscle’s”[All Fields] OR “muscles”[MeSH Terms] OR “muscles”[All Fields] OR “muscle”[All Fields]

belly: “bellies”[All Fields] OR “belly”[All Fields]

repair: “repairability”[All Fields] OR “repairable”[All Fields] OR “repaire”[All Fields] OR “repaired”[All Fields] OR “repairment”[All Fields] OR “wound healing”[MeSH Terms] OR (“wound”[All Fields] AND “healing”[All Fields]) OR “wound healing”[All Fields] OR “repair”[All Fields] OR “repairing”[All Fields] OR “repairs”[All Fields]

muscle: “muscle’s”[All Fields] OR “muscles”[MeSH Terms] OR “muscles”[All Fields] OR “muscle”[All Fields]

laceration: “lacerations”[MeSH Terms] OR “lacerations”[All Fields] OR “lacerate”[All Fields] OR “lacerated”[All Fields] OR “lacerating”[All Fields] OR “laceration”[All Fields]

repair: “repairability”[All Fields] OR “repairable”[All Fields] OR “repaire”[All Fields] OR “repaired”[All Fields] OR “repairment”[All Fields] OR “wound healing”[MeSH Terms] OR (“wound”[All Fields] AND “healing”[All Fields]) OR “wound healing”[All Fields] OR “repair”[All Fields] OR “repairing”[All Fields] OR “repairs”[All Fields]

technique: “methods”[MeSH Terms] OR “methods”[All Fields] OR “technique”[All Fields] OR “methods”[Subheading] OR “techniques”[All Fields] OR “technique’s”[All Fields]

biomechanical: “biomechanical phenomena”[MeSH Terms] OR (“biomechanical”[All Fields] AND “phenomena”[All Fields]) OR “biomechanical phenomena”[All Fields] OR “biomechanic”[All Fields] OR “biomechanics”[All Fields] OR “biomechanical”[All Fields] OR “biomechanically”[All Fields]

testing: “test’s”[All Fields] OR “tested”[All Fields] OR “testing”[All Fields] OR “testings”[All Fields] OR “tests”[All Fields]

tensile: “tensil”[All Fields] OR “tensile”[All Fields]

shoulder: “shoulder”[MeSH Terms] OR “shoulder”[All Fields] OR “shoulders”[All Fields] OR “shoulder’s”[All Fields]

Results

25

  1. Shoulder was excluded to filter out rotator cuff tendon repair studies. Inclusion criteria were created a priori. We included original research articles containing tensile testing of muscle belly repair techniques. We excluded case reports, opinion-based reports, congress abstracts, meta-analyses, and non-research articles. The initial search on all three databases resulted in 32 papers. Five papers were identified as duplicates and excluded. One author reviewed the titles and abstracts of the remaining 27 papers and excluded studies focused on tendon or non-skeletal muscle repair.

Appendix 2. Summary outcomes of suture techniques

Study

Suture technique

Suture type

Preload

Loading

Maximum load

Mean strain

Stiffness

Displacement

Failure mode

Kragh et al

Kessler

Size 2, braided polyester

5–8 N

25 mm/min

35.1 N (SD 9.4)

7.9 (SD 2.9)

-

-

Tear out (n = 5/5)

He et al

Kessler

Size 5 and 6, polypropylene

2 N

60 mm/min

15.5 N

-

1 N/mm

-

-

Chance et al

Kessler

Size 2, braided polyester

-

-

16.18 N (SD 6.08)

-

-

-

Pullout (n = 12/13)

Avulsion (n = 1/13)

Castillo et al

Mason-Allen

Size 3, polyglactin

-

-

45.39 N (SD 13.86)

-

1.76 N/mm (SD 0.68)

28.45 mm (SD 9.37) at maximum load

-

Goyal et al

Mason-Allen

Size 1 and 2, Ethibond barbed PDS

1 N

60 mm/min

12.73 N (SD 2.40)

-

-

1.84 mm (SD 0.39) at 10N

-

Chance et al

Mason-Allen

Size 2, braided polyester

-

-

36.58 N (SD 11.28)

-

-

-

Avulsion (n = 13/13)

Chance et al

Mattress

Size 2, braided polyester

-

-

18.14 N (SD 5.10)

-

-

-

Avulsion (n = 31/31)

He et al

Mattress

Size 5 and 6 polypropylene

2 N

60 mm/min

4.4 N

-

0.3 N/mm

-

-

Castillo et al

Perimeter

Size 3, polyglactin

3–5 N

25 mm/min

64.29 N (SD 19.30)

-

3.24 N/mm (SD 0.73)

64.29 mm (SD 19.30) at maximum load

-

Chance et al

Perimeter

Size 2, braided polyester

-

-

43.35 (SD 11.28)

-

-

-

Avulsion (n = 12/13)

Pullout (n = 1/13)

Kragh et al

MAP

Size 2, braided polyester

5–8 N

25 mm/min

74 N (SD 11.3)

12.2 (SD 3.7

-

-

No failure

Chance et al

MAP

Size 2, braided polyester

-

-

62.76 N (SD 13.73)

-

-

-

Avulsion (n = 13/13)

He et al

MAP

Size 5 and 6, polypropylene

2 N

60 mm/min

13.2 N

-

0.6 N/mm

-

-

Castillo et al

Figure-of-8

Size 3, polyglactin

3–5 N

25 mm/min

54.18 N (SD 21.47)

-

2.52 N/mm (SD 0.99)

27.22 mm (SD 6.64) at maximum load

-

Goyal et al

Figure-of-8

Size 1 and 2, Ethibond barbed PDS

1 N

60 mm/min

8.96 N (SD 4.24)

-

-

-

-

Lionello et al

Figure-of-8

Size 2, polyglactin

10 N

0.1 N/s

59 N

-

5 N/mm

-

-

Chance et al

Figure-of-8

Size 2, braided polyester

-

-

17.36 N (SD 4.31)

-

-

-

Pullout (n = 13/13)

Goyal et al

Modified Kessler

Size 1 and 2, Ethibond barbed PDS

1 N

60 mm/min

7.71 N (SD 3.78)

-

-

-

-

Lionello et al

Simple

Size 2, polyglactin

10 N

0.1 N/s

61 N

-

-

-

-

Goyal et al. (Barbed)

Custom/novel

Size 1 and 2 Ethibond barbed PDS

1 N

60 mm/min

17.86 N (SD 2.26)

-

-

1.57 mm (SD 0.39) at 10 N

-

Goyal et al. (Ethibond)

Custom/novel

Size 1 and 2 Ethibond barbed PDS

1 N

60 mm/min

13.16 N (SD 1.57)

-

-

3.55 mm (SD 0.78) at 10 N

-

Lionello et al

Custom/novel

Size 2, polyglactin

10 N

0.1 N/s

85 N

-

5.4 N/mm

-

-

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stulginski, A., Vallurupalli, M., Pakvasa, M. et al. Evaluating suturing methods for surgical repair of muscle belly lacerations: a scoping review of biomechanical studies. Eur J Plast Surg 47, 23 (2024). https://doi.org/10.1007/s00238-024-02161-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00238-024-02161-w

Keywords

Navigation