Skip to main content
Log in

A theory of ultimately periodic languages and automata with an application to time granularity

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

In this paper, we develop a theory of regular ω-languages that consist of ultimately periodic words only and we provide it with an automaton-based characterization. The resulting class of automata, called ultimately periodic automata (UPA), is a subclass of the class of Büchi automata and inherits some properties of automata over finite words (NFA). Taking advantage of the similarities among UPA, Büchi automata, and NFA, we devise efficient solutions to a number of basic problems for UPA, such as the inclusion, the equivalence, and the size optimization problems. The original motivation for developing a theory of ultimately periodic languages and automata was to represent and to reason about sets of time granularities in knowledge-based and database systems. In the last part of the paper, we show that UPA actually allow one to represent (possibly infinite) sets of granularities, instead of single ones, in a compact and suitable to algorithmic manipulation way. In particular, we describe an application of UPA to a concrete time granularity scenario taken from clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bresolin, D., Montanari, A., Puppis, G.: Time granularities and ultimately periodic automata. In: Proceedings of the 9th European Conference on Logics in Artificial Intelligence (JELIA). Lecture Notes in Artificial Intelligence, vol. 3229, pp. 513–525. Springer, Heidelberg (2004)

  2. Bettini C., Jajodia S., Wang X.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  3. Demri S.: LTL over integer periodicity constraints. Theor. Comput. Sci. 360(1–3), 96–123 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dal Lago, U., Montanari, A.: Calendars, time granularities, and automata. In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases (SSTD). Lecture Notes in Computer Science, vol. 2121, pp. 279–298. Springer, Heidelberg (2001)

  5. Leban, B., McDonald, D., Foster, D.: A representation for collections of temporal intervals. In: Proceedings of the AAAI National Conference on Artificial Intelligence, vol. 1, pp. 367–371. AAAI Press, New York (1986)

  6. Niezette, M., Stevenne, J.: An efficient symbolic representation of periodic time. In: Proceedings of the International Conference on Information and Knowledge Management (CIKM), pp. 161–168. Association for Computing Machinery, New York (1992)

  7. Ning P., Jajodia S., Wang X.: An algebraic representation of calendars. Ann. Math. Artif. Intell. 36, 5–38 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Combi C., Franceschet M., Peron A.: Representing and reasoning about temporal granularities. J. Logic Comput. 14, 51–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Computer Science, vol. B: Formal Models and Semantics, pp. 995–1072. Elsevier/MIT Press, Amsterdam/Cambridge (1990)

  10. Wijsen, J.: A string-based model for infinite granularities. In: Proceedings of the AAAI Workshop on Spatial and Temporal Granularities, pp. 9–16. AAAI Press, New York (2000)

  11. Dal Lago, U., Montanari, A., Puppis, G.: Towards compact and tractable automaton-based representations of time granularity. In: Proceedings of the 8th Italian Conference on Theoretical Computer Science (ICTCS). Lecture Notes in Computer Science, vol. 2841, pp. 72–85. Springer, Heidelberg (2003)

  12. Dal Lago U., Montanari A., Puppis G.: Compact and tractable automaton-based representations for time granularities.. Theor. Comput. Sci. 373(1–2), 115–141 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dal Lago, U., Montanari, A., Puppis, G.: On the equivalence of automaton-based representations of time granularities. In: Proceedings of the 14th International Symposium on Temporal Representation and Reasoning (TIME), pp. 82–93. IEEE Computer Society, New York (2007)

  14. Puppis, G.: Automata for branching and layered temporal structures. Ph.D. thesis, Department of Mathematics and Computer Science, Udine University, Udine, Italy (CS 2006/08). Available at: http://users.dimi.uniud.it/~gabriele.puppis/files/PhDThesis.pdf

  15. Büchi, J.: On a decision method in restricted second order arithmetic. In: Proceedings of the International Congress for Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University Press, Stanford (1962)

  16. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational ω-languages. In: Proceedings of the 9th International Conference on Mathematical Foundations of Programming Semantics. Lecture Notes in Computer Science, vol. 802, pp. 554–566. Springer, Heidelberg (1994)

  17. Paige R., Tarjan R., Bonic R.: A linear time solution to the single function coarsest partition problem. Theor. Comput. Sci. 40, 67–84 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Knuth D., Morris J., Pratt V.: Fast pattern matching in strings. SIAM J. Comput. 6, 323–350 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Booth K.: Lexicographically least circular substrings.. Inf. Process. Lett. 10(4–5), 240–242 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shiloach Y.: Fast canonization of circular strings. J. Algorithm 2(2), 107–121 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hopcroft J., Motwani R., Ullman J.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley Longman Publishing Co. Inc., Reading (2001)

    MATH  Google Scholar 

  22. Campeanu, C., II, K.C., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Proceedings of the 4th International Workshop on Implementing Automata (WIA). Lecture Notes in Computer Science, vol. 2214, pp. 60–70. Springer, Heidelberg (1999)

  23. Brzozowski J.: Canonical regular expressions and minimal state graphs for definite events.. Math. Theory Automata 12, 529–561 (1962)

    Google Scholar 

  24. Sistla A., Vardi M., Wolper P.: The complementation problem for B üchi automata with applications to temporal logic. Theor. Comput. Sci. 49, 217–237 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Löding, C.: Optimal bounds for the transformation of omega-automata. In: Proceedings of the 19th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS). Lecture Notes in Computer Science, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)

  26. Michel, M.: Complementation is more difficult with automata on infinite words (1988). CNET, Paris, Manuscript

  27. Muller D., Schupp P.: Simulating alternating tree automata by non-deterministic automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra.. Theor. Comput. Sci. 141(1–2), 69–107 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Safra, S.: On the complexity of ω-automata. In: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pp. 319–327. IEEE Computer Society, New York (1988)

  29. Safra, S.: Complexity of automata on infinite objects. Ph.D. thesis, Weizmann Institute of Science, Rehovot, Israel (1989)

  30. Miyano S., Hayashi T.: Alternating finite automata on ω-words. Theor. Comput. Sci. 32, 321–330 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Löding, C., Thomas, W.: Alternating automata and logics over infinite words. In: Proceedings of the IFIP International Conference on Theoretical Computer Science (IFIP TCS), Exploring new frontiers of theoretical informatics. Lecture Notes in Computer Science, vol. 1872, pp. 521–535. Springer, Heidelberg (2000)

  32. Papadimitriou C.: Computational Complexity. Addison-Wesley Longman Publishing Co., Inc, Reading (1994)

    MATH  Google Scholar 

  33. Jiang T., Ravikumar B.: Minimal NFA problems are hard. SIAM J. Comput. 22(6), 1117–1141 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kameda T., Weiner P.: On the state minimization of nondeterministic finite automata. IEEE Trans. Comput. 19(7), 617–627 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  35. Matz, O., Potthoff, A.: Computing small nondeterministic automata. In: Proceedings of the Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), BRICS Notes Series, pp. 74–88 (1995)

  36. Loma Linda International Heart Institute: Pediatric heart transplantation protocol. Tech. rep., International Heart Institute, Loma Linda University Medical Center, Loma Linda, CA (2002). Available at: http://www.llu.edu/ihi/pedproto.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Montanari.

Additional information

A short preliminary version of this paper appeared in [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bresolin, D., Montanari, A. & Puppis, G. A theory of ultimately periodic languages and automata with an application to time granularity. Acta Informatica 46, 331–360 (2009). https://doi.org/10.1007/s00236-009-0094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-009-0094-7

Keywords

Navigation