Skip to main content
Log in

Posterior circulation ischemic stroke: radiomics-based machine learning approach to identify onset time from magnetic resonance imaging

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Posterior circulation ischemic stroke (PCIS) possesses unique features. However, previous studies have primarily or exclusively relied on anterior circulation stroke cases to build machine learning (ML) models for predicting onset time. To date, there is no research reporting the effectiveness and stability of ML in identifying PCIS onset time. We aimed to build diffusion-weighted imaging-based ML models to identify the onset time of PCIS patients.

Methods

Consecutive PCIS patients within 24 h of definite symptom onset were included (112 in the training set and 49 in the independent test set). Images were processed as follows: volume of interest segmentation, image feature extraction, and feature selection. Five ML models, naïve Bayes, logistic regression, tree ensemble, k-nearest neighbor, and random forest, were built based on the training set to estimate the stroke onset time (binary classification: ≤ 4.5 h or > 4.5 h). Relative standard deviations (RSD), receiver operating characteristic (ROC) curves, and the calibration plot was performed to evaluate the stability and performance of the five models.

Results

The random forest model had the best performance in the test set, with the highest area under the curve (AUC, 0.840; 95% CI: 0.706, 0.974). This model also achieved the highest accuracy, sensitivity, specificity, positive predictive value, and negative predictive value (83.7%, 64.3%, 91.4%, 75.0%, and 86.5%, respectively). Furthermore, the model had high stability (RSD = 0.0094).

Conclusion

The PCIS case-based ML model was effective for estimating the symptom onset time and achieved considerably high specificity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data reported in this study are available upon reasonable request to the corresponding author.

Abbreviations

ADC:

Apparent diffusion coefficient

AIS:

Acute ischemic stroke

AUC:

Area under the curve

CTP:

CT perfusion imaging

DWI:

Diffusion-weighted imaging

FLAIR:

Fluid-attenuated inversion recovery

KNN:

K-nearest neighbor

LR:

Logistic regression

ML:

Machine learning

NB:

Naïve Bayes

NIHSS:

National Institutes of Health Stroke Scale

NPV:

Negative predictive value

PCIS:

Posterior circulation ischemic stroke

PDM:

PWI-DWI mismatch

PPV:

Positive predictive value

PWI:

Perfusion-weighted imaging

RF:

Random forest

ROC:

Receiver operating characteristic

RSD:

Relative standard deviation

TE:

Tree ensemble

TSS:

Time-since-stroke

References

  1. Sparaco M, Ciolli L, Zini A (2019) Posterior circulation ischaemic stroke-a review part I: anatomy, aetiology and clinical presentations. Neurol Sci : Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 40:1995–2006. https://doi.org/10.1007/s10072-019-03977-2

    Article  Google Scholar 

  2. Sparaco M, Ciolli L, Zini A (2019) Posterior circulation ischemic stroke-a review part II: imaging and acute treatment. Neurol Sci : Off J Ital Neurol Soc Ital Soc Clin Neurophysio 40:2007–2015. https://doi.org/10.1007/s10072-019-03936-x

    Article  Google Scholar 

  3. Berge E, Whiteley W, Audebert H, et al (2021) European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. European stroke journal 6:I-lxii. https://doi.org/10.1177/2396987321989865

  4. Powers WJ, Rabinstein AA, Ackerson T et al (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 50:e344–e418. https://doi.org/10.1161/str.0000000000000211

    Article  PubMed  Google Scholar 

  5. Bluhmki E, Chamorro A, Dávalos A, Machnig T, Sauce C, Wahlgren N, Wardlaw J, Hacke W (2009) Stroke treatment with alteplase given 3.0-4.5 h after onset of acute ischaemic stroke (ECASS III): additional outcomes and subgroup analysis of a randomised controlled trial. Lancet Neurol 8:1095–1102. https://doi.org/10.1016/s1474-4422(09)70264-9

    Article  CAS  PubMed  Google Scholar 

  6. Serena J, Dávalos A, Segura T, Mostacero E, Castillo J (2003) Stroke on awakening: looking for a more rational management. Cerebrovasc Dis (Basel Switzerland) 16:128–133. https://doi.org/10.1159/000070592

    Article  Google Scholar 

  7. Mackey J, Kleindorfer D, Sucharew H et al (2011) Population-based study of wake-up strokes. Neurology 76:1662–1667. https://doi.org/10.1212/WNL.0b013e318219fb30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rimmele DL, Thomalla G (2014) Wake-up stroke: clinical characteristics, imaging findings, and treatment option - an update. Front Neurol 5:35. https://doi.org/10.3389/fneur.2014.00035

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee H, Lee EJ, Ham S, Lee HB, Lee JS, Kwon SU, Kim JS, Kim N, Kang DW (2020) Machine Learning Approach to Identify Stroke Within 4.5 Hours. Stroke 51:860–866. https://doi.org/10.1161/strokeaha.119.027611

    Article  PubMed  Google Scholar 

  10. Jiang L, Wang S, Ai Z, Shen T, Zhang H, Duan S, Chen YC, Yin X, Sun J (2022) Development and external validation of a stability machine learning model to identify wake-up stroke onset time from MRI. Eur Radiol 32:3661–3669. https://doi.org/10.1007/s00330-021-08493-6

    Article  PubMed  Google Scholar 

  11. Zhu H, Jiang L, Zhang H, Luo L, Chen Y, Chen Y (2021) An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. NeuroImage Clin 31:102744. https://doi.org/10.1016/j.nicl.2021.102744

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW (2019) A machine learning approach for classifying ischemic stroke onset time from imaging. IEEE Trans Med Imaging 38:1666–1676. https://doi.org/10.1109/tmi.2019.2901445

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Polson JS, Nael K, Salamon N, Yoo B, El-Saden S, Scalzo F, Speier W, Arnold CW (2021) Intra-domain task-adaptive transfer learning to determine acute ischemic stroke onset time. Comput Med Imaging Graphics : Off J Comput Med Imaging Soc 90:101926. https://doi.org/10.1016/j.compmedimag.2021.101926

    Article  Google Scholar 

  14. Kim K, Kim BJ, Huh J et al (2021) Delayed lesions on diffusion-weighted imaging in initially lesion-negative stroke patients. J Stroke 23:69–81. https://doi.org/10.5853/jos.2020.02110

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lindsberg PJ, Pekkola J, Strbian D, Sairanen T, Mattle HP, Schroth G (2015) Time window for recanalization in basilar artery occlusion: speculative synthesis. Neurology 85:1806–1815. https://doi.org/10.1212/wnl.0000000000002129

    Article  PubMed  Google Scholar 

  16. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24:35–41. https://doi.org/10.1161/01.str.24.1.35

    Article  PubMed  Google Scholar 

  17. Bader-El-Den M, Teitei E, Perry T (2019) Biased random forest for dealing with the class imbalance problem. IEEE Trans Neural Netw Learn Syst 30:2163–2172. https://doi.org/10.1109/tnnls.2018.2878400

    Article  PubMed  Google Scholar 

  18. Blagus R, Lusa L (2013) SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics 14:106. https://doi.org/10.1186/1471-2105-14-106

    Article  PubMed  PubMed Central  Google Scholar 

  19. Breiman L (2001) Random Forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  20. Thomalla G, Cheng B, Ebinger M et al (2011) DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol 10:978–986. https://doi.org/10.1016/s1474-4422(11)70192-2

    Article  PubMed  Google Scholar 

  21. Markus HS, Michel P (2022) Treatment of posterior circulation stroke: acute management and secondary prevention. Int J Stroke : Off J Int Stroke Soc 17:723–732. https://doi.org/10.1177/17474930221107500

    Article  Google Scholar 

  22. Keselman B, Gdovinová Z, Jatuzis D et al (2020) Safety and outcomes of intravenous thrombolysis in posterior versus anterior circulation stroke: results from the safe implementation of treatments in stroke registry and meta-analysis. Stroke 51:876–882. https://doi.org/10.1161/strokeaha.119.027071

    Article  PubMed  Google Scholar 

  23. Tong X, Liao X, Pan Y et al (2016) Intravenous thrombolysis is more safe and effective for posterior circulation stroke: data from the Thrombolysis Implementation and Monitor of Acute Ischemic Stroke in China (TIMS-China). Medicine 95:e3848. https://doi.org/10.1097/md.0000000000003848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang Q, Song HQ, Ma QF, Song XW, Wu J (2019) Effects of time delays on the therapeutic outcomes of intravenous thrombolysis for acute ischemic stroke in the posterior circulation: an observational study. Brain Behav 9:e01189. https://doi.org/10.1002/brb3.1189

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cortijo E, García-Bermejo P, Calleja AI, Pérez-Fernández S, Gómez R, del Monte JM, Reyes J, Arenillas JF (2014) Intravenous thrombolysis in ischemic stroke with unknown onset using CT perfusion. Acta Neurol Scand 129:178–183. https://doi.org/10.1111/ane.12160

    Article  CAS  PubMed  Google Scholar 

  26. Morelli N, Rota E, Iafelice I, Petracca F, Magnacavallo A, Michieletti E, Guidetti D (2014) Parenchyma, pipes, perfusion and penumbra imaging: the multimodal CT in wake-up stroke basilar thrombosis. Eur Neurol 71:155–156. https://doi.org/10.1159/000355469

    Article  PubMed  Google Scholar 

  27. Hill MD, Kenney C, Dzialowski I, Boulanger JM, Demchuk AM, Barber PA, Watson TW, Weir NU, Buchan AM (2013) Tissue Window in Stroke Thrombolysis study (TWIST): a safety study. Can J Neurol Sci Le J Can Des Sci Neurol 40:17–20. https://doi.org/10.1017/s0317167100012890

    Article  Google Scholar 

  28. Parsons MW, Pepper EM, Chan V, Siddique S, Rajaratnam S, Bateman GA, Levi CR (2005) Perfusion computed tomography: prediction of final infarct extent and stroke outcome. Ann Neurol 58:672–679. https://doi.org/10.1002/ana.20638

    Article  PubMed  Google Scholar 

  29. Campbell BCV, Majoie C, Albers GW et al (2019) Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data. Lancet Neurol 18:46–55. https://doi.org/10.1016/s1474-4422(18)30314-4

    Article  PubMed  Google Scholar 

  30. Zhang YL, Zhang JF, Wang XX, Wang Y, Anderson CS, Wu YC (2021) Wake-up stroke: imaging-based diagnosis and recanalization therapy. J Neurol 268:4002–4012. https://doi.org/10.1007/s00415-020-10055-7

    Article  PubMed  Google Scholar 

  31. Huisa BN, Liebeskind DS, Raman R, Hao Q, Meyer BC, Meyer DM, Hemmen TM (2013) Diffusion-weighted imaging-fluid attenuated inversion recovery mismatch in nocturnal stroke patients with unknown time of onset. J Stroke Cerebrovasc Dis : Off J Natl Stroke Assoc 22:972–977. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.01.004

    Article  Google Scholar 

  32. Odland A, Særvoll P, Advani R, Kurz MW, Kurz KD (2015) Are the current MRI criteria using the DWI-FLAIR mismatch concept for selection of patients with wake-up stroke to thrombolysis excluding too many patients? Scand J Trauma Resuscitation Emerg Med 23:22. https://doi.org/10.1186/s13049-015-0101-7

    Article  Google Scholar 

  33. Keshari R, Vatsa M, Singh R, Noore A (2018) Learning structure and strength of CNN filters for small sample size training. In: 2018 IEEE/CVF Conf Comput Vis Pattern Recognition 9349–9358. https://doi.org/10.1109/CVPR.2018.00974

Download references

Acknowledgements

We thank Dawei Yang, MD, for his suggestions on the Discussion section. We express our gratitude for the support provided by the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX202101).

Funding

This study was funded by the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX202101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-Gang Qiao or Zhenghan Yang.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This retrospective study was approved by our Institutional Review Board (number 2021–014).

Informed consent

The informed consent requirement was waived by the Ethics Committee due to the retrospective nature of the study.

Competing interests

Zhenghan Yang reports funds from the Beijing Municipal Administration of Hospitals. The other authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhenhao Liu and Shiyu Zhang are co-first authors

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, S., Wang, Y. et al. Posterior circulation ischemic stroke: radiomics-based machine learning approach to identify onset time from magnetic resonance imaging. Neuroradiology (2024). https://doi.org/10.1007/s00234-024-03353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00234-024-03353-8

Keywords

Navigation