Skip to main content
Log in

Involvement of the default mode network in patients with transient global amnesia: multilayer network

  • Advanced Neuroimaging
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

We aimed to investigate the alterations in the multilayer network in patients with transient global amnesia (TGA).

Methods

We enrolled 124 patients with TGA and 80 healthy controls. Both patients with TGA and healthy controls underwent a three-teslar brain magnetic resonance imaging (MRI). A gray matter layer matrix was created using a morphometric similarity network derived from the T1-weighted imaging, and a white matter layer matrix was constructed using structural connectivity based on the diffusion tensor imaging. A multilayer network analysis was performed by applying graph theoretical analysis.

Results

There were no significant differences in global network measures between the groups. However, several regions, related to the default mode network, showed significant differences in nodal network measures between the groups. Multi-richness in the left pars opercularis, multi-rich-club degree in the right posterior cingulate gyrus, and weighted multiplex participation in the right posterior cingulate gyrus were higher in patients with TGA compared with healthy controls (15.47 vs. 12.26, p = 0.0005; 41.68 vs. 37.16, p = 0.0005; 0.90 vs. 0.80, p = 0.0005; respectively). The multiplex core–periphery in the left precuneus was higher (0.96 vs. 0.84, p = 0.0005), whereas that in the transverse temporal gyrus was lower in patients with TGA compared with healthy controls (0.00 vs. 0.02, p = 0.0005).

Conclusion

We newly find the alterations in the multilayer network in patients with TGA compared with healthy controls, which shows the involvement of the default mode network. These changes may be related to the pathophysiology of TGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data that support the findings of this study are available upon reasonable request.

References

  1. Kirshner HS (2011) Transient global amnesia: a brief review and update. Curr Neurol Neurosci Rep 11(6):578–582. https://doi.org/10.1007/s11910-011-0224-9

    Article  PubMed  Google Scholar 

  2. Huang CF, Pai MC (2008) Transient amnesia in a patient with left temporal tumor: symptomatic transient global amnesia or an epileptic amnesia? Neurologist 14(3):196–200. https://doi.org/10.1097/NRL.0b013e3181618af1

    Article  PubMed  Google Scholar 

  3. Chau L, Liu A (2019) Transient global amnesia as the sole presentation of an acute stroke in the left cingulate gyrus. Case Rep Neurol Med 2019:4810629. https://doi.org/10.1155/2019/4810629

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meng D, Alsaeed M, Randhawa J, Chen T (2021) Retrosplenial stroke mimicking transient global amnesia. Can J Neurol Sci 48(6):884–885. https://doi.org/10.1017/cjn.2021.6

    Article  PubMed  Google Scholar 

  5. Teive HA, Kowacs PA, Maranhao Filho P, Piovesan EJ, Werneck LC (2005) Leao’s cortical spreading depression: from experimental “artifact” to physiological principle. Neurology 65(9):1455–1459. https://doi.org/10.1212/01.wnl.0000183281.12779.cd

    Article  CAS  PubMed  Google Scholar 

  6. Lewis SL (1998) Aetiology of transient global amnesia. Lancet 352(9125):397–399. https://doi.org/10.1016/S0140-6736(98)01442-1

    Article  CAS  PubMed  Google Scholar 

  7. Pantoni L, Bertini E, Lamassa M, Pracucci G, Inzitari D (2005) Clinical features, risk factors, and prognosis in transient global amnesia: a follow-up study. Eur J Neurol 12(5):350–356. https://doi.org/10.1111/j.1468-1331.2004.00982.x

    Article  CAS  PubMed  Google Scholar 

  8. Seo YD, Lee DA, Park KM (2023) Can artificial intelligence diagnose transient global amnesia using electroencephalography data? J Clin Neurol 19(1):36–43. https://doi.org/10.3988/jcn.2023.19.1.36

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park KM, Han YH, Kim TH, Mun CW, Shin KJ, Ha SY, Park J, Kim SE (2015) Pre-existing structural abnormalities of the limbic system in transient global amnesia. J Clin Neurosci 22(5):843–847. https://doi.org/10.1016/j.jocn.2014.11.017

    Article  PubMed  Google Scholar 

  10. Kim HC, Lee BI, Kim SE, Park KM (2017) Cortical morphology in patients with transient global amnesia. Brain Behav 7(12):e00872. https://doi.org/10.1002/brb3.872

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park KM, Lee BI, Kim SE (2018) Is transient global amnesia a network disease? Eur Neurol 80(5–6):345–354. https://doi.org/10.1159/000496511

    Article  PubMed  Google Scholar 

  12. Kim J, Lee DA, Kim HC, Lee HJ, Park KM (2021) Brain networks in patients with isolated or recurrent transient global amnesia. Acta Neurol Scand 144(5):465–472. https://doi.org/10.1111/ane.13490

    Article  PubMed  Google Scholar 

  13. Kim GH, Kim BR, Chun MY, Park KD, Lim SM, Jeong JH (2021) Aberrantly higher functional connectivity in the salience network is associated with transient global amnesia. Sci Rep 11(1):20598. https://doi.org/10.1038/s41598-021-97842-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Logan AP, LaCasse PM, Lunday BJ (2023) Social network analysis of Twitter interactions: a directed multilayer network approach. Soc Netw Anal Min 13(1):65. https://doi.org/10.1007/s13278-023-01063-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Buldu JM, Papo D (2018) Can multilayer brain networks be a real step forward?: Comment on “Network science of biological systems at different scales: A review” by M. Gosak et al. Phys Life Rev 24:153–155

  16. Klepl D, He F, Wu M, Blackburn DJ, Sarrigiannis PG (2023) Cross-frequency multilayer network analysis with bispectrum-based functional connectivity: a study of Alzheimer’s disease. Neuroscience 521:77–88. https://doi.org/10.1016/j.neuroscience.2023.04.008

    Article  CAS  PubMed  Google Scholar 

  17. Long D, Zhang M, Yu J, Zhu Q, Chen F, Li F (2023) Intelligent diagnosis of major depression disease based on multi-layer brain network. Front Neurosci 17:1126865. https://doi.org/10.3389/fnins.2023.1126865

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ke M, Wang C, Liu G (2023) Multilayer brain network modeling and dynamic analysis of juvenile myoclonic epilepsy. Front Behav Neurosci 17:1123534. https://doi.org/10.3389/fnbeh.2023.1123534

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hodges JR, Warlow CP (1990) Syndromes of transient amnesia: towards a classification A study of 153 cases. J Neurol Neurosurg Psychiatry 53(10):834–843. https://doi.org/10.1136/jnnp.53.10.834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97(20):11050–11055. https://doi.org/10.1073/pnas.200033797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  22. King DJ, Wood AG (2020) Clinically feasible brain morphometric similarity network construction approaches with restricted magnetic resonance imaging acquisitions. Netw Neurosci 4(1):274–291. https://doi.org/10.1162/netn_a_00123

    Article  PubMed  PubMed Central  Google Scholar 

  23. Seidlitz J, Vasa F, Shinn M, Romero-Garcia R, Whitaker KJ, Vertes PE, Wagstyl K, Kirkpatrick Reardon P, Clasen L, Liu S, Messinger A, Leopold DA, Fonagy P, Dolan RJ, Jones PB, Goodyer IM, Consortium N, Raznahan A, Bullmore ET (2018) Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97(1):231-247e237. https://doi.org/10.1016/j.neuron.2017.11.039

    Article  CAS  PubMed  Google Scholar 

  24. Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29(9):1626–1635. https://doi.org/10.1109/TMI.2010.2045126

    Article  PubMed  Google Scholar 

  25. Mijalkov M, Kakaei E, Pereira JB, Westman E, Volpe G (2017) Alzheimer’s Disease Neuroimaging I BRAPH: a graph theory software for the analysis of brain connectivity. PLoS One 12(8):0178798. https://doi.org/10.1371/journal.pone.0178798

    Article  CAS  Google Scholar 

  26. de Domenico M (2018) Multilayer network modeling of integrated biological systems: Comment on “Network science of biological systems at different scales: A review” by Gosak et al. Phys Life Rev 24:149–152

  27. Puxeddu MG, Petti M, Astolfi L (2021) A comprehensive analysis of multilayer community detection algorithms for application to EEG-based brain networks. Front Syst Neurosci 15:624183. https://doi.org/10.3389/fnsys.2021.624183

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lv Y, Huang S, Zhang T, Gao B (2021) Application of multilayer network models in bioinformatics. Front Genet 12:664860. https://doi.org/10.3389/fgene.2021.664860

    Article  PubMed  PubMed Central  Google Scholar 

  29. Casas-Roma J, Martinez-Heras E, Sole-Ribalta A, Solana E, Lopez-Soley E, Vivo F, Diaz-Hurtado M, Alba-Arbalat S, Sepulveda M, Blanco Y, Saiz A, Borge-Holthoefer J, Llufriu S, Prados F (2022) Applying multilayer analysis to morphological, structural, and functional brain networks to identify relevant dysfunction patterns. Netw Neurosci 6(3):916–933. https://doi.org/10.1162/netn_a_00258

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shahabi H, Nair DR, Leahy RM (2023) Multilayer brain networks can identify the epileptogenic zone and seizure dynamics. Elife 17(12):e68531

  31. Mak LE, Minuzzi L, MacQueen G, Hall G, Kennedy SH, Milev R (2017) The default mode network in healthy individuals: a systematic review and meta-analysis. Brain Connect 7(1):25–33. https://doi.org/10.1089/brain.2016.0438

    Article  PubMed  Google Scholar 

  32. Park KM, Kim KT, Kang KW, Park JA, Seo JG, Kim J, Chang H, Kim EY, Cho YW (2022) Society RLSSotKSR Alterations of functional connectivity in patients with restless legs syndrome. J Clin Neurol 18(3):290–297. https://doi.org/10.3988/jcn.2022.18.3.290

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Li Y, Sun F, Xu Y, Xu F, Wang S, Wang X (2023) Altered neuromagnetic activity in default mode network in childhood absence epilepsy. Front Neurosci 17:1133064. https://doi.org/10.3389/fnins.2023.1133064

    Article  PubMed  PubMed Central  Google Scholar 

  34. Malotaux V, Dricot L, Quenon L, Lhommel R, Ivanoiu A, Hanseeuw B (2023) Default-mode network connectivity changes during the progression toward Alzheimer’s dementia: a longitudinal functional magnetic resonance imaging study. Brain Connect 13(5):287–296. https://doi.org/10.1089/brain.2022.0008

    Article  PubMed  Google Scholar 

  35. Chai XJ, Ofen N, Gabrieli JD, Whitfield-Gabrieli S (2014) Development of deactivation of the default-mode network during episodic memory formation. Neuroimage 84:932–938. https://doi.org/10.1016/j.neuroimage.2013.09.032

    Article  PubMed  Google Scholar 

  36. Sestieri C, Corbetta M, Romani GL, Shulman GL (2011) Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J Neurosci 31(12):4407–4420. https://doi.org/10.1523/Jneurosci.3335-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee DA, Lee S, Kim DW, Lee HJ, Park KM (2021) Effective connectivity alteration according to recurrence in transient global amnesia. Neuroradiology 63(9):1441–1449. https://doi.org/10.1007/s00234-021-02645-7

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and ICT of the Republic of Korea (NRF-2021R1F1A1049605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Min Park.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.A., Lee, HJ. & Park, K.M. Involvement of the default mode network in patients with transient global amnesia: multilayer network. Neuroradiology 65, 1729–1736 (2023). https://doi.org/10.1007/s00234-023-03241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-023-03241-7

Keywords

Navigation