Skip to main content

Advertisement

Log in

Dynamic contrast-enhanced MRI may be helpful to predict response and prognosis after bevacizumab treatment in patients with recurrent high-grade glioma: comparison with diffusion tensor and dynamic susceptibility contrast imaging

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to evaluate the utility of diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) imaging for stratifying bevacizumab treatment outcomes in patients with recurrent high-grade glioma.

Methods

Fifty-three patients with recurrent high-grade glioma who underwent baseline magnetic resonance imaging including DTI, DCE, and DSC before bevacizumab treatment were included. The mean apparent diffusion coefficient, fractional anisotropy, normalized cerebral blood volume, normalized cerebral blood flow, volume transfer constant, rate transfer coefficient (Kep), extravascular extracellular volume fraction, and plasma volume fraction were assessed. Predictors of response status, progression-free survival (PFS), and overall survival (OS) were determined using logistic regression and Cox proportional hazard modeling.

Results

Responders (n = 16) showed significantly longer PFS and OS (P < 0.001) compared with nonresponders (n = 37). Multivariable analysis revealed that lower mean Kep (odds ratio = 0.01, P = 0.008) was the only independent predictor of favorable response after adjustment for age, isocitrate dehydrogenase (IDH) mutation status, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. Multivariable Cox proportional hazard modeling showed that a higher mean Kep was the only variable associated with shorter PFS (hazard ratio [HR] = 7.90, P = 0.006) and OS (HR = 9.71, P = 0.020) after adjustment for age, IDH mutation status, and MGMT promoter methylation status.

Conclusion

Baseline mean Kep may be a useful biomarker for predicting response and stratifying patient outcomes following bevacizumab treatment in patients with recurrent high-grade glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Our anonymized data can be obtained by any qualified investigator for the purposes of replicating procedures and results after ethics clearance and approval by all authors.

Code availability

The code can be obtained by any qualified investigator for the purposes of replicating procedures and results after approval by all authors.

References

  1. Sitohy B, Nagy JA, Dvorak HF (2012) Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 72(8):1909–1914. https://doi.org/10.1158/0008-5472.Can-11-3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708. https://doi.org/10.1056/NEJMoa1308573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wen PY, Norden AD, Drappatz J, Quant E (2010) Response assessment challenges in clinical trials of gliomas. Curr Oncol Rep 12(1):68–75. https://doi.org/10.1007/s11912-009-0078-3

    Article  PubMed  Google Scholar 

  4. Pope WB, Kim HJ, Huo J, Alger J, Brown MS, Gjertson D, Sai V, Young JR, Tekchandani L, Cloughesy T, Mischel PS, Lai A, Nghiemphu P, Rahmanuddin S, Goldin J (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252(1):182–189. https://doi.org/10.1148/radiol.2521081534

    Article  PubMed  Google Scholar 

  5. Ellingson BM, Gerstner ER, Smits M, Huang RY, Colen R, Abrey LE, Aftab DT, Schwab GM, Hessel C, Harris RJ, Chakhoyan A, Gahrmann R, Pope WB, Leu K, Raymond C, Woodworth DC, de Groot J, Wen PY, Batchelor TT, van den Bent MJ, Cloughesy TF (2017) Diffusion MRI phenotypes predict overall survival benefit from anti-VEGF monotherapy in recurrent glioblastoma: converging evidence from phase II trials. Clin Cancer Res 23(19):5745–5756. https://doi.org/10.1158/1078-0432.Ccr-16-2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rahman R, Hamdan A, Zweifler R, Jiang H, Norden AD, Reardon DA, Mukundan S, Wen PY, Huang RY (2014) Histogram analysis of apparent diffusion coefficient within enhancing and nonenhancing tumor volumes in recurrent glioblastoma patients treated with bevacizumab. J Neuro-Oncol 119(1):149–158. https://doi.org/10.1007/s11060-014-1464-8

    Article  CAS  Google Scholar 

  7. Schell M, Pflüger I, Brugnara G, Isensee F, Neuberger U, Foltyn M, Kessler T, Sahm F, Wick A, Nowosielski M, Heiland S, Weller M, Platten M, Maier-Hein KH, von Deimling A, van den Bent MJ, Gorlia T, Wick W, Bendszus M, Kickingereder P (2020) Validation of diffusion MRI phenotypes for predicting response to bevacizumab in recurrent glioblastoma: post-hoc analysis of the EORTC-26101 trial. Neuro-Oncology 22:1667–1676. https://doi.org/10.1093/neuonc/noaa120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmainda KM, Zhang Z, Prah M, Snyder BS, Gilbert MR, Sorensen AG, Barboriak DP, Boxerman JL (2015) Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro-Oncology 17(8):1148–1156. https://doi.org/10.1093/neuonc/nou364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kickingereder P, Wiestler B, Burth S, Wick A, Nowosielski M, Heiland S, Schlemmer HP, Wick W, Bendszus M, Radbruch A (2015) Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro-Oncology 17(8):1139–1147. https://doi.org/10.1093/neuonc/nov028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kickingereder P, Radbruch A, Burth S, Wick A, Heiland S, Schlemmer HP, Wick W, Bendszus M, Bonekamp D (2016) MR perfusion-derived hemodynamic parametric response mapping of bevacizumab efficacy in recurrent glioblastoma. Radiology 279(2):542–552. https://doi.org/10.1148/radiol.2015151172

    Article  PubMed  Google Scholar 

  11. Bonekamp D, Mouridsen K, Radbruch A, Kurz FT, Eidel O, Wick A, Schlemmer HP, Wick W, Bendszus M, Østergaard L, Kickingereder P (2017) Assessment of tumor oxygenation and its impact on treatment response in bevacizumab-treated recurrent glioblastoma. J Cereb Blood Flow Metab 37(2):485–494. https://doi.org/10.1177/0271678x16630322

    Article  PubMed  Google Scholar 

  12. Verhoeff JJC, Lavini C, van Linde ME, Stalpers LJA, Majoie C, Reijneveld JC, van Furth WR, Richel DJ (2010) Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma. Ann Oncol 21(8):1723–1727. https://doi.org/10.1093/annonc/mdp591

    Article  CAS  PubMed  Google Scholar 

  13. Kickingereder P, Brugnara G, Hansen MB, Nowosielski M, Pflüger I, Schell M, Isensee F, Foltyn M, Neuberger U, Kessler T, Sahm F, Wick A, Heiland S, Weller M, Platten M, von Deimling A, Maier-Hein KH, Østergaard L, van den Bent MJ, Gorlia T, Wick W, Bendszus M (2020) Noninvasive characterization of tumor angiogenesis and oxygenation in bevacizumab-treated recurrent glioblastoma by using dynamic susceptibility MRI: secondary analysis of the European Organization for Research and Treatment of Cancer 26101 Trial. Radiology:200978. https://doi.org/10.1148/radiol.2020200978

  14. Park JE, Kim HS, Park SY, Jung SC, Kim JH, Heo HY (2020) Identification of early response to anti-angiogenic therapy in recurrent glioblastoma: amide proton transfer-weighted and perfusion-weighted MRI compared with diffusion-weighted MRI. Radiology 295(2):397–406. https://doi.org/10.1148/radiol.2020191376

    Article  PubMed  Google Scholar 

  15. Li X, Zhu Y, Kang H, Zhang Y, Liang H, Wang S, Zhang W (2015) Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer imaging : the official publication of the International Cancer Imaging Society 15(1):4. https://doi.org/10.1186/s40644-015-0039-z

    Article  Google Scholar 

  16. Park YW, Ahn SS, Kim EH, Kang SG, Chang JH, Kim SH, Zhou J, Lee SK (2020) Differentiation of recurrent diffuse glioma from treatment-induced change using amide proton transfer imaging: incremental value to diffusion and perfusion parameters. Neuroradiology 63:363–372. https://doi.org/10.1007/s00234-020-02542-5

    Article  PubMed  Google Scholar 

  17. Port RE, Bernstein LJ, Barboriak DP, Xu L, Roberts TP, van Bruggen N (2010) Noncompartmental kinetic analysis of DCE-MRI data from malignant tumors: application to glioblastoma treated with bevacizumab. Magn Reson Med 64(2):408–417. https://doi.org/10.1002/mrm.22399

    Article  CAS  PubMed  Google Scholar 

  18. Kickingereder P, Wiestler B, Graf M, Heiland S, Schlemmer HP, Wick W, Wick A, Bendszus M, Radbruch A (2015) Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab. J Neuro-Oncol 121(2):373–380. https://doi.org/10.1007/s11060-014-1644-6

    Article  CAS  Google Scholar 

  19. Piludu F, Marzi S, Pace A, Villani V, Fabi A, Carapella CM, Terrenato I, Antenucci A, Vidiri A (2015) Early biomarkers from dynamic contrast-enhanced magnetic resonance imaging to predict the response to antiangiogenic therapy in high-grade gliomas. Neuroradiology 57(12):1269–1280. https://doi.org/10.1007/s00234-015-1582-9

    Article  PubMed  Google Scholar 

  20. Prados M, Cloughesy T, Samant M, Fang L, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Das A, Friedman HS (2011) Response as a predictor of survival in patients with recurrent glioblastoma treated with bevacizumab. Neuro-Oncology 13(1):143–151. https://doi.org/10.1093/neuonc/noq151

    Article  CAS  PubMed  Google Scholar 

  21. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J of Magn Reson Imaging: An Official J Int Soc Magn Reson Med 10(3):223–232

    Article  CAS  Google Scholar 

  22. Cha J, Kim S, Kim H-J, B-j K, Kim Y, Lee J, Jeon P, Kim K, Kong D-s, Nam D-H (2014) Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. Am J Neuroradiol 35(7):1309–1317

    Article  CAS  Google Scholar 

  23. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–198

    Article  CAS  Google Scholar 

  24. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972. https://doi.org/10.1200/jco.2009.26.3541

    Article  PubMed  Google Scholar 

  25. Cho SJ, Kim HS, Suh CH, Park JE (2020) Radiological recurrence patterns after bevacizumab treatment of recurrent high-grade glioma: a systematic review and meta-analysis. Korean J Radiol 21(7):908–918. https://doi.org/10.3348/kjr.2019.0898

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cha S, Johnson G, Wadghiri YZ, Jin O, Babb J, Zagzag D, Turnbull DH (2003) Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49(5):848–855. https://doi.org/10.1002/mrm.10446

    Article  PubMed  Google Scholar 

  27. Park YW, Ahn SS, Park CJ, Han K, Kim EH, Kang SG, Chang JH, Kim SH, Lee SK (2020) Diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas. Eur Radiol 30(12):6475–6484. https://doi.org/10.1007/s00330-020-07090-3

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Kreisl T, Solomon J, Reynolds R, Glen D, Cox R, Fine H, Butman J (2009) Acute effects of bevacizumab on glioblastoma vascularity assessed with DCE-MRI and relation to patient survival. Proceedings ISMRM 17:282

    CAS  Google Scholar 

  29. Heverhagen JT, von Tengg-Kobligk H, Baudendistel KT, Jia G, Polzer H, Henry H, Levine AL, Rosol TJ, Knopp MV (2004) Benign prostate hyperplasia: evaluation of treatment response with DCE MRI. Magma 17(1):5–11. https://doi.org/10.1007/s10334-004-0040-1

    Article  CAS  PubMed  Google Scholar 

  30. O'Connor JP, Jayson GC (2012) Do imaging biomarkers relate to outcome in patients treated with VEGF inhibitors? Clin Cancer Res 18(24):6588–6598. https://doi.org/10.1158/1078-0432.Ccr-12-1501

    Article  CAS  PubMed  Google Scholar 

  31. Nam JG, Kang KM, Choi SH, Lim WH, Yoo RE, Kim JH, Yun TJ, Sohn CH (2017) Comparison between the prebolus T1 measurement and the fixed T1 value in dynamic contrast-enhanced MR imaging for the differentiation of true progression from pseudoprogression in glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy. AJNR Am J Neuroradiol 38(12):2243–2250. https://doi.org/10.3174/ajnr.A5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giesel FL, Bischoff H, von Tengg-Kobligk H, Weber MA, Zechmann CM, Kauczor HU, Knopp MV (2006) Dynamic contrast-enhanced MRI of malignant pleural mesothelioma: a feasibility study of noninvasive assessment, therapeutic follow-up, and possible predictor of improved outcome. Chest 129(6):1570–1576. https://doi.org/10.1378/chest.129.6.1570

    Article  PubMed  Google Scholar 

  33. Schlemmer HP, Merkle J, Grobholz R, Jaeger T, Michel MS, Werner A, Rabe J, van Kaick G (2004) Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol 14(2):309–317. https://doi.org/10.1007/s00330-003-2025-2

    Article  PubMed  Google Scholar 

  34. Oto A, Yang C, Kayhan A, Tretiakova M, Antic T, Schmid-Tannwald C, Eggener S, Karczmar GS, Stadler WM (2011) Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 197(6):1382–1390. https://doi.org/10.2214/ajr.11.6861

    Article  PubMed  Google Scholar 

  35. Conte GM, Altabella L, Castellano A, Cuccarini V, Bizzi A, Grimaldi M, Costa A, Caulo M, Falini A, Anzalone N (2019) Comparison of T1 mapping and fixed T1 method for dynamic contrast-enhanced MRI perfusion in brain gliomas. Eur Radiol 29(7):3467–3479. https://doi.org/10.1007/s00330-019-06122-x

    Article  CAS  PubMed  Google Scholar 

  36. Sengupta A, Agarwal S, Gupta PK, Ahlawat S, Patir R, Gupta RK, Singh A (2018) On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images. Eur J Radiol 106:199–208. https://doi.org/10.1016/j.ejrad.2018.07.018

    Article  PubMed  Google Scholar 

Download references

Funding

This research received funding from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2020R1A2C1003886), and from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A1A01071648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Soo Ahn.

Ethics declarations

Conflict of interest

We declare that we have no conflicts of interest.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this retrospective study, formal consent was not required.

Consent to participate

As this is a retrospective study, the institutional review board waived the need for obtaining informed patient consent.

Consent for publication

All of the authors gave consent for publication of the article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y.W., Ahn, S.S., Moon, J.H. et al. Dynamic contrast-enhanced MRI may be helpful to predict response and prognosis after bevacizumab treatment in patients with recurrent high-grade glioma: comparison with diffusion tensor and dynamic susceptibility contrast imaging. Neuroradiology 63, 1811–1822 (2021). https://doi.org/10.1007/s00234-021-02693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02693-z

Keywords

Navigation