Skip to main content
Log in

Reliability and accuracy of 3-mm and 2-mm maximum intensity projection CT angiography to detect intracranial large vessel occlusion in patients with acute anterior cerebral circulation stroke

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the reliability and accuracy of thick maximum intensity projection (MIP) CTA images to detect large-vessel occlusion (LVO) in the anterior circulation in patients with acute stroke.

Methods

A total of 140 acute stroke patients (41 with and 99 without LVO) were evaluated by two neuroradiologists for LVO using axial 3-mm and 2-mm MIPs.

Results

Interobserver agreement was substantial using 3-mm MIPs (ĸ = 0.67) and almost perfect using 2-mm MIPs (ĸ = 0.82). Using 3-mm MIPs, sensitivities were 80.5% and 68.3%, with specificities of 98.0% and 96.0%. Using 2-mm MIPs, sensitivities were 82.9% and 73.2%, with specificities of 98.0% and 99.0%. Sensitivity and specificity of 3 mm and 2 mm MIPs were not statistically significantly different (P ≥ 0.375). The majority of LVOs in the distal intracranial carotid artery, and/or M1-segment were correctly identified: 96.0% (observer 1, 3-mm MIPs), 88.0% (observer 2, 3-mm MIPs), 96.0% (observer 1, 2-mm MIPs), and 96.0% (observer 2, 2 mm MIPs). Using 3-mm MIP images, observers 1 and 2 missed 7/15 (46.7%) and 9/15 (60.0%) of isolated M2-segment occlusions, respectively. Using 2-mm MIP images, observers 1 and 2 missed 5/15 (33.3%) and 6/15 (40.0%) of isolated M2-segment occlusions, respectively.

Conclusion

Thick (2–3 mm) axial MIPs are not useful to detect proximal LVO in the anterior circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG, HERMES collaborators (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387(10029):1723–1731

    Article  Google Scholar 

  2. Almekhlafi MA, Kunz WG, Menon BK, McTaggart RA, Jayaraman MV, Baxter BW, Heck D, Frei D, Derdeyn CP, Takagi T, Aamodt AH, Fragata IMR, Hill MD, Demchuk AM, Goyal M (2019) Imaging of patients with suspected large-vessel occlusion at primary stroke centers: available modalities and a suggested approach. AJNR Am J Neuroradiol 40:396–400

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fasen BACM, Heijboer RJJ, Hulsmans FH, Kwee RM (2020) Radiology workload in clinical implementation of thrombectomy for acute ischemic stroke: experience from The Netherlands. Neuroradiology 62:877–882

    Article  Google Scholar 

  4. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, Campbell BC, Nogueira RG, Demchuk AM, Tomasello A, Cardona P, Devlin TG, Frei DF, du Mesnil de Rochemont R, Berkhemer OA, Jovin TG, Siddiqui AH, van Zwam WH, Davis SM, Castaño C, Sapkota BL, Fransen PS, Molina C, van Oostenbrugge RJ, Chamorro Á, Lingsma H, Silver FL, Donnan GA, Shuaib A, Brown S, Stouch B, Mitchell PJ, Davalos A, Roos YB, Hill MD, HERMES Collaborators (2016) Time to Treatment With Endovascular Thrombectomy and Outcomes From Ischemic Stroke: A Meta-analysis. JAMA 316:1279–1288

    Article  Google Scholar 

  5. Wagemans BA, van Zwam WH, Nelemans PJ, van Oostenbrugge RJ, Postma AA (2017) 4D-CTA improves diagnostic certainty and accuracy in the detection of proximal intracranial anterior circulation occlusion in acute ischemic stroke. PLoS One 12:e0172356

    Article  Google Scholar 

  6. Saver JL (2006) Time is brain--quantified. Stroke 37:263–266

    Article  Google Scholar 

  7. Hidlay DT, McTaggart RA, Baird G, Yaghi S, Hemendinger M, Tung EL, Dibiasio EL, Haas RA, Jayaraman MV (2018) Accuracy of smartphone-based evaluation of emergent large vessel occlusion on CTA. Clin Neurol Neurosurg 171:135–138

    Article  Google Scholar 

  8. Mitchell JR, Sharma P, Modi J, Simpson M, Thomas M, Hill MD, Goyal M (2011) A smartphone client-server teleradiology system for primary diagnosis of acute stroke. J Med Internet Res 13:e31

    Article  Google Scholar 

  9. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HC, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, Korevaar DA, Cohen JF, STARD Group (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 351:h5527

    Article  Google Scholar 

  10. McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22:2762–2782

    Google Scholar 

  11. Nael K, Sakai Y, Khatri P, Prestigiacomo CJ, Puig J, Vagal A (2019) Imaging-based selection for endovascular treatment in stroke. Radiographics 39:1696–1713

    Article  Google Scholar 

  12. Jansen IG, Mulder MJ, Goldhoorn RB, Boers AM, van Es AC, Yo LS, Hofmeijer J, Martens JM, van Walderveen MA, van der Kallen BF, Jenniskens SF, Treurniet KM, Marquering HA, Sprengers ME, Schonewille WJ, Bot JC, Lycklama A, Nijeholt GJ, Lingsma HF, Liebeskind DS, Boiten J, Vos JA, Roos YB, van Oostenbrugge RJ, van der Lugt A, van Zwam WH, Dippel DW, van den Wijngaard IR, Majoie CB, MR CLEAN Registry investigators (2019) Impact of single phase CT angiography collateral status on functional outcome over time: results from the MR CLEAN Registry. J Neurointerv Surg 11:866–873

    Article  Google Scholar 

  13. Saba L, Sanfilippo R, Montisci R, Mallarini G (2010) Assessment of intracranial arterial stenosis with multidetector row CT angiography: a postprocessing techniques comparison. AJNR Am J Neuroradiol 31:874–879

    Article  CAS  Google Scholar 

  14. Tan JC, Dillon WP, Liu S, Adler F, Smith WS, Wintermark M (2007) Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol 61:533–543

    Article  Google Scholar 

  15. Gibo H, Carver CC, Rhoton AL Jr, Lenkey C, Mitchell RJ (1981) Microsurgical anatomy of the middle cerebral artery. J Neurosurg 54:151–169

    Article  CAS  Google Scholar 

  16. Fasen BACM, Heijboer RJJ, Hulsmans FH, Kwee RM (2020) CT Angiography in evaluating large-vessel occlusion in acute anterior circulation ischemic stroke: factors associated with diagnostic error in clinical practice. AJNR Am J Neuroradiol 41:607–611

    Article  CAS  Google Scholar 

  17. Ospel JM, Qiu W, Goyal M (2020) Missed medium-vessel occlusions on CT angiography: make it easier… easily! AJNR Am J Neuroradiol 41:E73–E74

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chung HJ, Lee BH, Hwang YJ, Kim SY, Lee JY, Kim YS, Hong KS, Cho YJ, Park JH (2014) Delayed-phase CT angiography is superior to arterial-phase CT angiography at localizing occlusion sites in acute stroke patients eligible for intra-arterial reperfusion therapy. J Clin Neurosci 21:596–600

    Article  Google Scholar 

  19. Watanabe Y, Uotani K, Nakazawa T, Higashi M, Yamada N, Hori Y, Kanzaki S, Fukuda T, Itoh T, Naito H (2009) Dual-energy direct bone removal CT angiography for evaluation of intracranial aneurysm or stenosis: comparison with conventional digital subtraction angiography. Eur Radiol 19:1019–1024

    Article  Google Scholar 

  20. Thomas C, Korn A, Krauss B, Ketelsen D, Tsiflikas I, Reimann A, Brodoefel H, Claussen CD, Kopp AF, Ernemann U, Heuschmid M (2010) Automatic bone and plaque removal using dual energy CT for head and neck angiography: feasibility and initial performance evaluation. Eur J Radiol 76:61–67

    Article  CAS  Google Scholar 

  21. Havla L, Thierfelder KM, Beyer SE, Sommer WH, Dietrich O (2015) Wavelet-based calculation of cerebral angiographic data from time-resolved CT perfusion acquisitions. Eur Radiol 25:2354–2361

    Article  Google Scholar 

  22. Kunz WG, Sommer WH, Havla L, Dorn F, Meinel FG, Dietrich O, Buchholz G, Ertl-Wagner B, Thierfelder KM (2017) Detection of single-phase CTA occult vessel occlusions in acute ischemic stroke using CT perfusion-based wavelet-transformed angiography. Eur Radiol 27:2657–2664

    Article  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Kwee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

This retrospective study was approved by the institutional review board of our hospital and patients’ consents were waived.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasen, B.A.C.M., Borghans, R.A.P., Heijboer, R.J.J. et al. Reliability and accuracy of 3-mm and 2-mm maximum intensity projection CT angiography to detect intracranial large vessel occlusion in patients with acute anterior cerebral circulation stroke. Neuroradiology 63, 1611–1616 (2021). https://doi.org/10.1007/s00234-021-02659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02659-1

Keywords

Navigation