Skip to main content

Advertisement

Log in

Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Since the relatively recent regulatory approval for clinical use in both Europe and North America, 7-Tesla (T) MRI has been adopted for clinical practice at our institution. Based on this experience, this article reviews the unique features of 7-T MRI neuroimaging and addresses the challenges of establishing a 7-T MRI clinical practice. The underlying fundamental physics principals of high-field strength MRI are briefly reviewed. Scanner installation, safety considerations, and artifact mitigation techniques are discussed. Seven-tesla MRI case examples of neurologic diseases including epilepsy, vascular abnormalities, and tumor imaging are presented to illustrate specific applications of 7-T MRI. The advantages of 7-T MRI in conjunction with advanced neuroimaging techniques such as functional MRI are presented. Seven-tesla MRI produces more detailed information and, in some cases, results in specific diagnoses where previous 3-T studies were insufficient. Still, persistent technical issues for 7-T scanning present ongoing challenges for radiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability of data and material (data transparency)

Not applicable.

References

  1. United States Food and Drug Administration (2017) FDA clears first 7 T magnetic resonance imaging device. https://www.fda.gov/news-events/press-announcements/fda-clears-first-7t-magnetic-resonance-imaging-device. Accessed 15 Jan 2020

  2. Barisano G, Sepehrband F, Ma S, Jann K, Cabeen R, Wang DJ, Toga AW, Law M (2019) Clinical 7 T MRI: are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol 92(1094):20180492. https://doi.org/10.1259/bjr.20180492

    Article  PubMed  Google Scholar 

  3. Feldman RE, Delman BN, Pawha PS, Dyvorne H, Rutland JW, Yoo J, Fields MC, Marcuse LV, Balchandani P (2019) 7 T MRI in epilepsy patients with previously normal clinical MRI exams compared against healthy controls. PLoS One 14(3):e0213642. https://doi.org/10.1371/journal.pone.0213642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M (2018) Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc 109:1–50. https://doi.org/10.1016/j.pnmrs.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  5. Balchandani P, Naidich TP (2015) Ultra-high-field MR neuroimaging. American Journal of Neuroradiology 36(7):1204–1215. https://doi.org/10.3174/ajnr.A4180

    Article  CAS  PubMed  Google Scholar 

  6. Deistung A, Rauscher A, Sedlacik J, Stadler J, Witoszynskyj S, Reichenbach JR (2008) Susceptibility weighted imaging at ultra high magnetic field strengths: theoretical considerations and experimental results. Magn Reson Med 60(5):1155–1168. https://doi.org/10.1002/mrm.21754

    Article  PubMed  Google Scholar 

  7. Dury RJ, Falah Y, Gowland PA, Evangelou N, Bright MG, Francis ST (2019) Ultra-high-field arterial spin labelling MRI for non-contrast assessment of cortical lesion perfusion in multiple sclerosis. European Radiology 29(4):2027–2033. https://doi.org/10.1007/s00330-018-5707-5

    Article  PubMed  Google Scholar 

  8. Hoff MN, McKinney A, Shellock FG, Rassner U, Gilk T, Watson RE Jr, Greenberg TD, Froelich J, Kanal E (2019) Safety considerations of 7-T MRI in clinical practice. Radiology 292(3):509–518. https://doi.org/10.1148/radiol.2019182742

    Article  PubMed  Google Scholar 

  9. Theysohn JM, Kraff O, Eilers K, Andrade D, Gerwig M, Timmann D, Schmitt F, Ladd ME, Ladd SC, Bitz AK (2014) Vestibular effects of a 7 Tesla MRI examination compared to 1.5 T and 0 T in healthy volunteers. PLoS One 9(3):e92104. https://doi.org/10.1371/journal.pone.0092104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poser BA, Setsompop K (2018) Pulse sequences and parallel imaging for high spatiotemporal resolution MRI at ultra-high field. NeuroImage 168:101–118. https://doi.org/10.1016/j.neuroimage.2017.04.006

    Article  PubMed  Google Scholar 

  11. Teeuwisse WM, Brink WM, Webb AG (2012) Quantitative assessment of the effects of high-permittivity pads in 7 Tesla MRI of the brain. Magn Reson Med 67(5):1285–1293. https://doi.org/10.1002/mrm.23108

    Article  PubMed  Google Scholar 

  12. Fagan AJ, Welker KM, Amrami KK, Frick MA, Watson RE, Kollasch P, Chebrolu V, Felmlee JP (2019) Image artifact management for clinical magnetic resonance imaging on a 7 T scanner using single-channel radiofrequency transmit mode. Investigative radiology 54(12):781–791. https://doi.org/10.1097/rli.0000000000000598

    Article  PubMed  Google Scholar 

  13. van Gemert J, Brink W, Webb A, Remis R (2019) High-permittivity pad design tool for 7 T neuroimaging and 3 T body imaging. Magn Reson Med 81(5):3370–3378. https://doi.org/10.1002/mrm.27629

    Article  PubMed  Google Scholar 

  14. van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. NeuroImage 47(4):1425–1434. https://doi.org/10.1016/j.neuroimage.2009.05.015

    Article  PubMed  Google Scholar 

  15. Gizewski ER, de Greiff A, Maderwald S, Timmann D, Forsting M, Ladd ME (2007) fMRI at 7 T: whole-brain coverage and signal advantages even infratentorially? NeuroImage 37(3):761–768. https://doi.org/10.1016/j.neuroimage.2007.06.005

    Article  PubMed  Google Scholar 

  16. Nguyen DK, Mbacfou MT, Nguyen DB, Lassonde M (2013) Prevalence of nonlesional focal epilepsy in an adult epilepsy clinic. Can J Neurol Sci 40(2):198–202. https://doi.org/10.1017/s0317167100013731

    Article  PubMed  Google Scholar 

  17. Winston GP, Micallef C, Kendell BE, Bartlett PA, Williams EJ, Burdett JL, Duncan JS (2013) The value of repeat neuroimaging for epilepsy at a tertiary referral centre: 16 years of experience. Epilepsy Research 105(3):349–355. https://doi.org/10.1016/j.eplepsyres.2013.02.022

    Article  PubMed  PubMed Central  Google Scholar 

  18. Veersema TJ, van Eijsden P, Gosselaar PH, Hendrikse J, Zwanenburg JJM, Spliet WGM, Aronica E, Braun KPJ, Ferrier CH (2016) 7 tesla T2*-weighted MRI as a tool to improve detection of focal cortical dysplasia. Epileptic Disorders 18(3):315–323. https://doi.org/10.1684/epd.2016.0838

    Article  PubMed  Google Scholar 

  19. De Ciantis A, Barba C, Tassi L, Cosottini M, Tosetti M, Costagli M, Bramerio M, Bartolini E, Biagi L, Cossu M, Pelliccia V, Symms MR, Guerrini R (2016) 7 T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia 57(3):445–454. https://doi.org/10.1111/epi.13313

    Article  PubMed  Google Scholar 

  20. Maranzano J, Dadar M, Rudko DA, De Nigris D, Elliott C, Gati JS, Morrow SA, Menon RS, Collins DL, Arnold DL, Narayanan S (2019) Comparison of multiple sclerosis cortical lesion types detected by multicontrast 3 T and 7 T MRI. American Journal of Neuroradiology. 40:1162–1169. https://doi.org/10.3174/ajnr.A6099

    Article  CAS  PubMed  Google Scholar 

  21. Mainero C, Benner T, Radding A, van der Kouwe A, Jensen R, Rosen BR, Kinkel RP (2009) In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 73(12):941–948. https://doi.org/10.1212/WNL.0b013e3181b64bf7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kilsdonk ID, Jonkman LE, Klaver R, van Veluw SJ, Zwanenburg JJ, Kuijer JP, Pouwels PJ, Twisk JW, Wattjes MP, Luijten PR, Barkhof F, Geurts JJ (2016) Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study. Brain 139(Pt 5):1472–1481. https://doi.org/10.1093/brain/aww037

    Article  PubMed  Google Scholar 

  23. Dixon JE, Simpson A, Mistry N, Evangelou N, Morris PG (2013) Optimisation of T2*-weighted MRI for the detection of small veins in multiple sclerosis at 3 T and 7 T. Eur J Radiol 82(5):719–727. https://doi.org/10.1016/j.ejrad.2011.09.023

    Article  PubMed  Google Scholar 

  24. Absinta M, Sati P, Schindler M, Leibovitch EC, Ohayon J, Wu T, Meani A, Filippi M, Jacobson S, Cortese IC, Reich DS (2016) Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest 126(7):2597–2609. https://doi.org/10.1172/jci86198

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Rotte AA, Groenewegen A, Rutgers DR, Witkamp T, Zelissen PM, Meijer FJ, van Lindert EJ, Hermus A, Luijten PR, Hendrikse J (2016) High resolution pituitary gland MRI at 7.0 tesla: a clinical evaluation in Cushing’s disease. Eur Radiol 26(1):271–277. https://doi.org/10.1007/s00330-015-3809-x

    Article  PubMed  Google Scholar 

  26. Law M, Wang R, Liu C-SJ, Shiroishi MS, Carmichael JD, Mack WJ, Weiss M, Wang DJJ, Toga AW, Zada G (2019) Value of pituitary gland MRI at 7 T in Cushing’s disease and relationship to inferior petrosal sinus sampling: case report. Journal of Neurosurgery JNS 130(2):347–351. https://doi.org/10.3171/2017.9.Jns171969

    Article  Google Scholar 

  27. Patel V, Liu C-SJ, Shiroishi MS, Hurth K, Carmichael JD, Zada G, Toga AW (2020) Ultra-high field magnetic resonance imaging for localization of corticotropin-secreting pituitary adenomas. Neuroradiology 62(8):1051–1054. https://doi.org/10.1007/s00234-020-02431-x

    Article  PubMed  Google Scholar 

  28. United States Food and Drug Administration (2014) Criteria for significant risk investigations of magnetic resonance diagnostic devices. guidance for industry and food and drug administration staff. Food and Drug Administration Center for Devices and Radiological Health, Rockville https://www.fda.gov/regulatory-information/search-fda-guidance-documents/criteria-significant-risk-investigations-magnetic-resonance-diagnostic-devices-guidance-industry-and. Accessed 4/24/2020 2020

    Google Scholar 

  29. International Electrotechnical Commission (2015) IEC 60601-2-33:2010: Medical electrical equipment - Part 2-33: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis, 3rd ed. with amendments. International Electrotechnical Commission. https://www.iecee.org/ords/f?p=106:49:0::::FSP_STD_ID:2647. Accessed 15 Jan 2020

  30. Cao Z, Yan X, Gore JC, Grissom WA (2020) Designing parallel transmit head coil arrays based on radiofrequency pulse performance. Magn Reson Med 83(6):2331–2342. https://doi.org/10.1002/mrm.28068

    Article  PubMed  Google Scholar 

  31. Shellock FG (2020) MRISAFETY.com. Shellock R & D Services, Inc. http://www.mrisafety.com/index.html. Accessed 24 Apr 2020

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Burkett.

Ethics declarations

Conflicts of interest/competing interests (include appropriate disclosures)

The authors declare that they have no conflict of interest.

Ethics approval (include appropriate approvals or waivers)

For this type of study (review article), formal consent is not required.

Consent to participate (include appropriate statements)

Not applicable.

Consent for publication (include appropriate statements)

Not applicable.

Code availability (software application or custom code)

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Seven-tesla MRI is a valuable addition to neuroradiology clinical practice which can improve diagnostic capability for certain neurologic diseases where conventional field strength scanning may fail.

• Successful clinical implementation of 7-T MRI requires special consideration of unit siting, patient safety factors, and artifact mitigation techniques.

• Functional MRI at 7-T provides higher signal to noise ratio and blood oxygenation level-dependent contrast, allowing for more specific functional localization in some cases.

• To fully realize the potential of 7-T MRI, unmet needs remain regarding receive coils, safe ancillary equipment and anesthesia capabilities, and expanded use with advanced neuroimaging techniques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkett, B.J., Fagan, A.J., Felmlee, J.P. et al. Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges. Neuroradiology 63, 167–177 (2021). https://doi.org/10.1007/s00234-020-02629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02629-z

Keywords

Navigation