Skip to main content
Log in

MRI-based classification of the anatomical variants of the hippocampal head

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The head of the hippocampus (H) is classically described as having two to four digitations both in ex vivo specimens and in vivo MR coronal images. The aim of this study was to develop and evaluate a new MR-based classification of the anatomical variants of the hippocampal head in a large sample population of healthy subjects.

Methods

MR images of the brain of 238 young healthy subjects (138 men and 100 women; age range 18–39) were analyzed. The head of the H was identified on coronal reformatted 3D T1 weighted MR images. The frequencies were reported for hemisphere and sex. Inter-rater reliability was assessed.

Results

Eight variants of the hippocampal head were described. Class 0 (11.4%) indicated a total absence of sulci. This class was further subdivided as follows: 0A (one digitation, 10.1%) and 0B (no digitations or “null variant”, 1.3%). Class 1 (25.6%) presented a single sulcus and was further subdivided into four types according to the location and the width of the sulcus [1A (8.8%), 1B (12.8%), 1C (1.3%), and 1D (2.7%)]. Class 2 (63.0%, the most frequent and the classical variant) had two symmetrical sulci and three digitations. Statistically significant differences between the two hemispheres were observed only in women and overall. Differences in prevalence between sexes were not observed.

Conclusions

The large study population allowed the description of a novel morphological classification of the different anatomical variants of normal H in the coronal plane. This classification could reduce the risk of misinterpreting normal anatomical variants as pathological.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

H:

hippocampus

References

  1. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tulving E, Markowitsch HJ (1998) Episodic and declarative memory: role of the hippocampus. Hippocampus 8(3):198–204. https://doi.org/10.1002/(SICI)1098-1063(1998)8:3<198::AID-HIPO2>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  3. Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44(1):109–120. https://doi.org/10.1016/j.neuron.2004.08.028

    Article  CAS  PubMed  Google Scholar 

  4. Testut L, Latarjet A (1948) Traité d'anatomie humaine. 2, 2nd edn. Doin & Cie, Paris

  5. Tien RD, Felsberg GJ, Crain B (1992) Normal anatomy of the hippocampus and adjacent temporal lobe: high-resolution fast spin-echo MR images in volunteers correlated with cadaveric histologic sections. AJR Am J Roentgenol 159(6):1309–1313. https://doi.org/10.2214/ajr.159.6.1442407

    Article  CAS  PubMed  Google Scholar 

  6. Klingler J (1948) Die makroskopische Anatomie der Ammonsformation. Fretz, Zürich

  7. Bronen RA, Cheung G (1991) MRI of the normal hippocampus. Magn Reson Imaging 9(4):497–500

    Article  CAS  PubMed  Google Scholar 

  8. Naidich TP, Daniels DL, Haughton VM, Williams A, Pojunas K, Palacios E (1987) Hippocampal formation and related structures of the limbic lobe: anatomic-MR correlation. Part I Surface features and coronal sections. Radiology 162(3):747–754. https://doi.org/10.1148/radiology.162.3.3809489

    Article  CAS  PubMed  Google Scholar 

  9. Duvernoy HM, Cattin F, Risold PY (2013) The human hippocampus: functional anatomy, vascularization and serial sections with MRI, 4th edn. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  10. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344(8925):769–772

    Article  CAS  PubMed  Google Scholar 

  11. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12(10):585–601. https://doi.org/10.1038/nrn3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heckers S (2001) Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11(5):520–528. https://doi.org/10.1002/hipo.1068

    Article  CAS  PubMed  Google Scholar 

  13. Bobinski M, de Leon MJ, Tarnawski M, Wegiel J, Reisberg B, Miller DC, Wisniewski HM (1998) Neuronal and volume loss in CA1 of the hippocampal formation uniquely predicts duration and severity of Alzheimer disease. Brain Res 805(1–2):267–269

    Article  CAS  PubMed  Google Scholar 

  14. Braak H, Rub U, Schultz C, Del Tredici K (2006) Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 9(3 Suppl):35–44

    Article  CAS  PubMed  Google Scholar 

  15. Malmgren K, Thom M (2012) Hippocampal sclerosis--origins and imaging. Epilepsia 53(Suppl 4):19–33. https://doi.org/10.1111/j.1528-1167.2012.03610.x

    Article  CAS  PubMed  Google Scholar 

  16. Meiners LC, van Gils A, Jansen GH, de Kort G, Witkamp TD, Ramos LM, Valk J, Debets RM, van Huffelen AC, van Veelen CW et al (1994) Temporal lobe epilepsy: the various MR appearances of histologically proven mesial temporal sclerosis. AJNR Am J Neuroradiol 15(8):1547–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Oppenheim C, Dormont D, Biondi A, Lehericy S, Hasboun D, Clemenceau S, Baulac M, Marsault C (1998) Loss of digitations of the hippocampal head on high-resolution fast spin-echo MR: a sign of mesial temporal sclerosis. AJNR Am J Neuroradiol 19(3):457–463

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Coras R, Milesi G, Zucca I, Mastropietro A, Scotti A, Figini M, Muhlebner A, Hess A, Graf W, Tringali G, Blumcke I, Villani F, Didato G, Frassoni C, Spreafico R, Garbelli R (2014) 7T MRI features in control human hippocampus and hippocampal sclerosis: an ex vivo study with histologic correlations. Epilepsia 55(12):2003–2016. https://doi.org/10.1111/epi.12828

    Article  PubMed  Google Scholar 

  19. Adler DH, Pluta J, Kadivar S, Craige C, Gee JC, Avants BB, Yushkevich PA (2014) Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI. Neuroimage 84:505–523. https://doi.org/10.1016/j.neuroimage.2013.08.067

    Article  PubMed  Google Scholar 

  20. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, Roy N, Frosch MP, McKee AC, Wald LL, Fischl B, Van Leemput K, Alzheimer's Disease Neuroimaging I (2015) A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 115:117–137. https://doi.org/10.1016/j.neuroimage.2015.04.042

    Article  PubMed  Google Scholar 

  21. Ding SL, Van Hoesen GW (2015) Organization and detailed Parcellation of human hippocampal head and body regions based on a combined analysis of cyto- and chemoarchitecture. J Comp Neurol 523(15):2233–2253. https://doi.org/10.1002/cne.23786

    Article  PubMed  Google Scholar 

  22. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  CAS  PubMed  Google Scholar 

  23. Gertz SD, Lindenberg R, Piavis GW (1972) Structural variations in the rostral human hippocampus. Johns Hopkins Med J 130(6):367–376

    CAS  PubMed  Google Scholar 

  24. Henry TR, Chupin M, Lehericy S, Strupp JP, Sikora MA, Sha ZY, Ugurbil K, Van de Moortele PF (2011) Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 T(1). Radiology 261(1):199–209. https://doi.org/10.1148/radiol.11101651

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bernasconi N, Kinay D, Andermann F, Antel S, Bernasconi A (2005) Analysis of shape and positioning of the hippocampal formation: an MRI study in patients with partial epilepsy and healthy controls. Brain 128(Pt 10):2442–2452. https://doi.org/10.1093/brain/awh599

    Article  CAS  PubMed  Google Scholar 

  26. Crystal HA, Dickson DW, Sliwinski MJ, Lipton RB, Grober E, Marks-Nelson H, Antis P (1993) Pathological markers associated with normal aging and dementia in the elderly. Ann Neurol 34(4):566–573. https://doi.org/10.1002/ana.410340410

    Article  CAS  PubMed  Google Scholar 

  27. Dickson DW, Davies P, Bevona C, Van Hoeven KH, Factor SM, Grober E, Aronson MK, Crystal HA (1994) Hippocampal sclerosis: a common pathological feature of dementia in very old (> or = 80 years of age) humans. Acta Neuropathol 88(3):212–221

    Article  CAS  PubMed  Google Scholar 

  28. Bajic D, Canto Moreira N, Wikstrom J, Raininko R (2012) Asymmetric development of the hippocampal region is common: a fetal MR imaging study. AJNR Am J Neuroradiol 33(3):513–518. https://doi.org/10.3174/ajnr.A2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ge X, Shi Y, Li J, Zhang Z, Lin X, Zhan J, Ge H, Xu J, Yu Q, Leng Y, Teng G, Feng L, Meng H, Tang Y, Zang F, Toga AW, Liu S (2015) Development of the human fetal hippocampal formation during early second trimester. Neuroimage 119:33–43. https://doi.org/10.1016/j.neuroimage.2015.06.055

    Article  PubMed  Google Scholar 

  30. Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 14(3):685–700. https://doi.org/10.1006/nimg.2001.0857

    Article  CAS  PubMed  Google Scholar 

  31. Zilles K, Schleicher A, Langemann C, Amunts K, Morosan P, Palomero-Gallagher N, Schormann T, Mohlberg H, Burgel U, Steinmetz H, Schlaug G, Roland PE (1997) Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum Brain Mapp 5(4):218–221. https://doi.org/10.1002/(SICI)1097-0193(1997)5:4<218::AID-HBM2>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  32. Luders E, Narr KL, Thompson PM, Rex DE, Jancke L, Steinmetz H, Toga AW (2004) Gender differences in cortical complexity. Nat Neurosci 7(8):799–800. https://doi.org/10.1038/nn1277

    Article  CAS  PubMed  Google Scholar 

  33. Luders E, Narr KL, Thompson PM, Woods RP, Rex DE, Jancke L, Steinmetz H, Toga AW (2005) Mapping cortical gray matter in the young adult brain: effects of gender. Neuroimage 26(2):493–501. https://doi.org/10.1016/j.neuroimage.2005.02.010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Caulo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccirilli, E., Gentile, L., Mattei, P.A. et al. MRI-based classification of the anatomical variants of the hippocampal head. Neuroradiology 62, 1105–1110 (2020). https://doi.org/10.1007/s00234-020-02430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02430-y

Keywords

Navigation