Skip to main content

Advertisement

Log in

Radiological imaging in multiple myeloma: review of the state-of-the-art

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Multiple myeloma is a type of blood cancer arising from the uncontrolled clonal proliferation of malignant plasma cells resulting in impaired hematopoiesis, hyper production of monoclonal protein, bone tissue destruction leading and renal system alterations up to kidney failure. The aim is to review the state-of-the-art of radiological imaging in multiple myeloma.

Methods

Radiological techniques as well as the advancements in imaging technology have been reviewed and summarized. The main radiological findings of different imaging techniques in patients suffering from multiple myeloma are also illustrated.

Results

Different radiological techniques provide structural and functional data. In the last years, conventional skeletal survey has gradually lost its utility and it has been replaced by whole body low-dose computed tomography which allows to identify also small lytic lesions, the medullary and the extramedullary involvement. Nowadays, magnetic resonance is the most sensitive imaging technique for detecting of skeletal as well as medullary involvement in patients with multiple myeloma. Thanks to the multiparametric evaluation (morphological, diffusion weighted and perfusion imaging sequences) and to the quantitative analysis, magnetic resonance imaging is proved to be useful in the early evaluation of response to therapy. Finally, positron emission tomography has greater sensibility compared to computed tomography as it provides quantitative data; however, the lower expression levels of the specific gene involved in the glycolysis pathway are associated with false-negative results with consequent underestimation of the disease.

Conclusion

The only use of the advanced combined multimodal imaging allows a better evaluation, staging and early assessment of treatment response in patients with multiple myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dimopoulos M, Terpos E, Comenzo RL et al (2009) International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma. Leukemia

  2. Palumbo A, Bringhen S, Ludwig H et al (2011) Personalized therapy in multiple myeloma according to patient age and vulnerability: a report of the European Myeloma Network (EMN). Blood

  3. Lorsbach RB (2010) Update on the diagnosis and classification of the plasma cell neoplasms. Surg Pathol Clin

  4. Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood

  5. Castillo JJ, Treon SP (2019) What is new in the treatment of Waldenstrom macroglobulinemia? Leukemia. 33:2555–2562. https://doi.org/10.1038/s41375-019-0592-8

    Article  PubMed  Google Scholar 

  6. Grammatico S, Scalzulli E, Petrucci MT (2017) Mediterranean journal of hematology and infectious diseases solitary plasmacytoma. Mediterr J Hematol Infect Dis. https://doi.org/10.4084/MJHID.2017.052

  7. Bahlis NJ, Lazarus HM (2006) Multiple myeloma-associated AL amyloidosis: is a distinctive therapeutic approach warranted? Bone Marrow Transplant

  8. Rane S, Rana S, Mudrabettu C et al (2012) Heavy-chain deposition disease: a morphological, immunofluorescence and ultrastructural assessment. Clin Kidney J

  9. Moreau P, San Miguel J, Sonneveld P et al (2017) Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. https://doi.org/10.1093/annonc/mdx096

  10. Moulopoulos LA, Koutoulidis V, Hillengass J, Zamagni E, Aquerreta JD, Roche CL, Lentzsch S, Moreau P, Cavo M, Miguel JS, Dimopoulos MA, Rajkumar SV, Durie BGM, Terpos E, Delorme S (2018) Recommendations for acquisition, interpretation and reporting of whole body low dose CT in patients with multiple myeloma and other plasma cell disorders: a report of the IMWG Bone Working Group. Blood Cancer J 8:1–9. https://doi.org/10.1038/s41408-018-0124-1

    Article  Google Scholar 

  11. Chantry A, Kazmi M, Barrington S et al (2017) Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol. https://doi.org/10.1111/bjh.14827

  12. Weber FP (2005) Multiple myeloma (myelomatosis) with Bence-Jones proteid in the urine (myelopathic albumosuria of Bradshaw, Kahler’s disease.). J Pathol Bacteriol. https://doi.org/10.1002/path.1700090205

  13. Baur-Melnyk A, Buhmann S, Becker C et al (2008) Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. Am J Roentgenol. https://doi.org/10.2214/AJR.07.2635

  14. Baur-Melnyk A, Reiser M (2004) Staging of multiple myeloma with MRI: comparison to MSCT and conventional radiography . Staging des Mult myeloms mit der MRT Vergleich zur MSCT und zur konventionellen röntgendiagnostik

  15. Terpos E, Moulopoulos LA, Dimopoulos MA (2011) Advances in imaging and the management of myeloma bone disease. J Clin Oncol

  16. Ågren B, Loqvist B, Bjorkstrand B et al (2009) Radiography and bone scintigraphy in bone marrow transplant multiple myeloma patients. Acta Radiol. https://doi.org/10.3109/02841859709171259

  17. Wahlin A, Holm J, Osterman G, Norberg B (1982) Evaluation of serial bone X-ray examination in multiple myeloma. Acta Med Scand. https://doi.org/10.1111/j.0954-6820.1982.tb03234.x

  18. Dinter DJ, Neff WK, Klaus J et al (2009) Comparison of whole-body MR imaging and conventional X-ray examination in patients with multiple myeloma and implications for therapy. Ann Hematol. https://doi.org/10.1007/s00277-008-0621-6

  19. Schreiman JS, McLeod RA, Kyle RA, Beabout JW (2014) Multiple myeloma: evaluation by CT. Radiology. https://doi.org/10.1148/radiology.154.2.3966137

  20. Mahnken AH, Wildberger JE, Gehbauer G et al (2002) Multidetector CT of the spine in multiple myeloma: comparison with MR imaging and radiography. Am J Roentgenol. https://doi.org/10.2214/ajr.178.6.1781429

  21. Horger M, Claussen CD, Bross-Bach U et al (2005) Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2004.04.015

  22. Kröpil P, Fenk R, Fritz LB et al (2008) Comparison of whole-body 64-slice multidetector computed tomography and conventional radiography in staging of multiple myeloma. Eur Radiol. https://doi.org/10.1007/s00330-007-0738-3

  23. Gleeson TG, Byrne B, Kenny P et al (2010) Image quality in low-dose multidetector computed tomography: a pilot study to assess feasibility and dose optimization in whole-body bone imaging. Can Assoc Radiol J. https://doi.org/10.1016/j.carj.2010.01.003

  24. Rajkumar SV, Dimopoulos MA, Palumbo A et al (2014) International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol

  25. Horger M, Pereira P, Claussen CD et al (2008) Hyperattenuating bone marrow abnormalities in myeloma patients using whole-body non-enhanced low-dose MDCT: Correlation with haematological parameters. Br J Radiol. https://doi.org/10.1259/bjr/21850180

  26. Hillengass J, Moulopoulos LA, Delorme S, Koutoulidis V, Mosebach J, Hielscher T, Drake M, Rajkumar SV, Oestergaard B, Abildgaard N, Hinge M, Plesner T, Suehara Y, Matsue K, Withofs N, Caers J, Waage A, Goldschmidt H, Dimopoulos MA, Lentzsch S, Durie B, Terpos E (2017) Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma: a study of the International Myeloma Working Group. Blood Cancer J 7. https://doi.org/10.1038/bcj.2017.78

  27. Husband JE, Schwartz LH, Spencer J et al (2004) Evaluation of the response to treatment of solid tumours - a consensus statement of the International Cancer Imaging Society. In: British Journal of Cancer

    Google Scholar 

  28. Zambello R, Crimì F, Lico A, Barilà G, Branca A, Guolo A, Varin C, Vezzaro R, Checuz L, Scapin V, Berno T, Pizzi M, Ponzoni A, Biasi E, Vio S, Semenzato G, Zucchetta P, Lacognata C (2019) Whole-body low-dose CT recognizes two distinct patterns of lytic lesions in multiple myeloma patients with different disease metabolism at PET/MRI. Ann Hematol 98:679–689. https://doi.org/10.1007/s00277-018-3555-7

    Article  CAS  PubMed  Google Scholar 

  29. Ippolito D, Besostri V, Bonaffini PA et al (2013) Diagnostic value of whole-body low-dose computed tomography(WBLDCT) in bone lesions detection in patients with multiplemyeloma (MM). Eur J Radiol. https://doi.org/10.1016/j.ejrad.2013.08.036

  30. Rajkumar SV (2015) Evolving diagnostic criteria for multiple myeloma. Hematology

  31. Heß T, Egerer G, Kasper B et al (2006) Atypical manifestations of multiple myeloma: radiological appearance. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2005.11.015

  32. Gleeson TG, Moriarty J, Shortt CP et al (2009) Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skelet Radiol. https://doi.org/10.1007/s00256-008-0607-4

  33. Johnson TRC (2012) Dual-energy CT: general principles. AJR Am J Roentgenol

  34. Johnson TRC, Krauß B, Sedlmair M et al (2007) Material differentiation by dual energy CT: Initial experience. Eur Radiol. https://doi.org/10.1007/s00330-006-0517-6

  35. Rutherford RA, Pullan BR, Isherwood I (1976) X-ray energies for effective atomic number determination. Neuroradiology. 11:23–28. https://doi.org/10.1007/BF00327254

    Article  CAS  PubMed  Google Scholar 

  36. Alvarez RE, MacOvski A (1976) Energy-selective reconstructions in X-ray computerised tomography. Phys Med Biol. https://doi.org/10.1088/0031-9155/21/5/002

  37. Kosmala A, Weng AM, Heidemeier A et al (2017) Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and pelvis. Radiology. https://doi.org/10.1148/radiol.2017170281

  38. Thomas C, Schabel C, Krauss B et al (2015) Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. In: American Journal of Roentgenology

    Google Scholar 

  39. Kosmala A, Weng AM, Krauss B, Knop S, Bley TA, Petritsch B (2018) Dual-energy CT of the bone marrow in multiple myeloma: diagnostic accuracy for quantitative differentiation of infiltration patterns. Eur Radiol 28:5083–5090. https://doi.org/10.1007/s00330-018-5537-5

    Article  PubMed  Google Scholar 

  40. Yu Z, Leng S, Jorgensen SM et al (2016) Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol. https://doi.org/10.1088/0031-9155/61/4/1572

  41. Goo HW, Goo JM (2017) Dual-energy CT: new horizon in medical imaging. Korean J Radiol

  42. Zamagni E, Nanni C, Patriarca F et al (2007) A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica. https://doi.org/10.3324/haematol.10554

  43. Hillengass J, Landgren O (2013) Challenges and opportunities of novel imaging techniques in monoclonal plasma cell disorders: imaging early myeloma. Leuk Lymphoma

  44. Walker R, Barlogie B, Haessler J et al (2007) Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol. https://doi.org/10.1200/JCO.2006.08.5803

  45. Regelink JC, Minnema MC, Terpos E et al (2013) Comparison of modern and conventional imaging techniques in establishing multiple myeloma-related bone disease: a systematic review. Br J Haematol. https://doi.org/10.1111/bjh.12346

  46. Rasche L, Angtuaco E, McDonald JE et al (2017) Low expression of hexokinase-2 is associated with false-negative FDG–positron emission tomography in multiple myeloma. Blood. https://doi.org/10.1182/blood-2017-03-774422

  47. Lindsey JD, Becker PS, Conrad EU (2016) My Myeloma : eloma : diagnosis and management. NICE Guidel

  48. Hillengass J, Fechtner K, Weber MA et al (2010) Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol. https://doi.org/10.1200/JCO.2009.25.5356

  49. Rajkumar SV (2016) Myeloma today: disease definitions and treatment advances. Am J Hematol. https://doi.org/10.1002/ajh.24236

  50. Rahmouni A, Divine M, Mathieu D et al (1993) Detection of multiple myeloma involving the spine: efficacy of fat- suppression and contrast-enhanced MR imaging. Am J Roentgenol. https://doi.org/10.2214/ajr.160.5.8470574

  51. Ma J (2008) A single-point dixon technique for fat-suppressed fast 3D gradient-echo imaging with a flexible echo time. J Magn Reson Imaging. https://doi.org/10.1002/jmri.21281

  52. Shah LM, Hanrahan CJ (2011) MRI of spinal bone marrow: part 1, techniques and normal age-related appearances. Am J Roentgenol

  53. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology. https://doi.org/10.1148/radiology.153.1.6089263

  54. Yoo HJ, Hong SH, Kim DH et al (2017) Measurement of fat content in vertebral marrow using a modified dixon sequence to differentiate benign from malignant processes. J Magn Reson Imaging. https://doi.org/10.1002/jmri.25496

  55. Kirchgesner T, Perlepe V, Michoux N et al (2017) Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2017.01.011

  56. Guerini H, Omoumi P, Guichoux F et al (2015) Fat suppression with Dixon techniques in musculoskeletal magnetic resonance imaging: a pictorial review. Semin Musculoskelet Radiol

  57. van Vucht N, Santiago R, Lottmann B et al (2019) The Dixon technique for MRI of the bone marrow. Skelet Radiol

  58. Bray TJP, Singh S, Latifoltojar A et al (2017) Diagnostic utility of whole body Dixon MRI in multiple myeloma: a multi-reader study. PLoS One. https://doi.org/10.1371/journal.pone.0180562

  59. Lee S, Choi DS, Shin HS et al (2018) FSE T2-weighted two-point dixon technique for fat suppression in the lumbar spine: comparison with SPAIR technique. Diagn Interv Radiol. https://doi.org/10.5152/dir.2018.17320

  60. Huijgen WHF, van Rijswijk CSP, Bloem JL (2019) Is fat suppression in T1 and T2 FSE with mDixon superior to the frequency selection-based SPAIR technique in musculoskeletal tumor imaging? Skelet Radiol 48:1905–1914. https://doi.org/10.1007/s00256-019-03227-8

    Article  Google Scholar 

  61. Danner A, Brumpt E, Alilet M et al (2019) Improved contrast for myeloma focal lesions with T2-weighted Dixon images compared to T1-weighted images. Diagn Interv Imaging. https://doi.org/10.1016/j.diii.2019.05.001

  62. Maeder Y, Dunet V, Richard R et al (2018) Bone marrow metastases: T2-weighted Dixon spin-echo fat images can replace T1-weighted spin-echo images. Radiology. https://doi.org/10.1148/radiol.2017170325

  63. Messiou C, Hillengass J, Delorme S et al (2019) Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: myeloma response assessment and diagnosis system (MY-RADS). Radiology. https://doi.org/10.1148/radiol.2019181949

  64. Silva JR, Hayashi D, Yonenaga T et al (2013) MRI of bone marrow abnormalities in hematological malignancies. Diagn Interv Radiol. https://doi.org/10.5152/dir.2013.067

  65. Dutoit JC, Vanderkerken MA, Anthonissen J, Dochy F, Verstraete KL (2014) The diagnostic value of SE MRI and DWI of the spine in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma. Eur Radiol 24:2754–2765. https://doi.org/10.1007/s00330-014-3324-5

    Article  PubMed  Google Scholar 

  66. Alyas F, Saifuddin A, Connell D (2007) MR imaging evaluation of the bone marrow and marrow infiltrative disorders of the lumbar spine. Magn Reson Imaging Clin N Am

  67. Baur-Melnyk A, Buhmann S, Dürr HR, Reiser M (2005) Role of MRI for the diagnosis and prognosis of multiple myeloma. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2005.01.017

  68. Stäbler A, Baur A, Bartl R et al (1996) Contrast enhancement and quantitative signal analysis in MR imaging of multiple myeloma: assessment of focal and diffuse growth patterns in marrow correlated with biopsies and survival rates. Am J Roentgenol. https://doi.org/10.2214/ajr.167.4.8819407

  69. Lecouvet FE, Vande Berg BC, Michaux L et al (2014) Stage III multiple myeloma: clinical and prognostic value of spinal bone marrow MR imaging. Radiology. https://doi.org/10.1148/radiology.209.3.9844655

  70. Caers J, Withofs N, Hillengass J et al (2014) The role of positron emission tomography-computed tomography and magnetic resonance imaging in diagnosis and follow up of multiple myeloma. Haematologica

  71. Baliyan V, Das CJ, Sharma R, Gupta AK (2016) Diffusion weighted imaging: technique and applications. World J Radiol. https://doi.org/10.4329/wjr.v8.i9.785

  72. Kwee TC, Takahara T, Ochiai R et al (2008) Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol. https://doi.org/10.1007/s00330-008-0968-z

  73. Messiou C, Giles S, Collins DJ et al (2012) Assessing response of myeloma bone disease with diffusion-weighted MRI. Br J Radiol. https://doi.org/10.1259/bjr/52759767

  74. Messiou C, Kaiser M (2015) Whole body diffusion weighted MRI - a new view of myeloma. Br J Haematol

  75. Huang S-Y, Chen B-B, Lu H-Y et al (2012) Correlation among DCE-MRI measurements of bone marrow angiogenesis, microvessel density, and extramedullary disease in patients with multiple myeloma. Am J Hematol. https://doi.org/10.1002/ajh.23256

  76. Messiou C, Collins DJ, Morgan VA, Desouza NM (2011) Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility. Eur Radiol. https://doi.org/10.1007/s00330-011-2116-4

  77. Padhani AR, Van Ree K, Collins DJ et al (2013) Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. Am J Roentgenol. https://doi.org/10.2214/AJR.11.8185

  78. Perez-Lopez R, Rodrigues DN, Figueiredo I et al (2018) Multiparametric magnetic resonance imaging of prostate cancer bone disease correlation with bone biopsy histological and molecular features. Investig Radiol. https://doi.org/10.1097/RLI.0000000000000415

  79. Winfield JM, Poillucci G, Blackledge MD, Collins DJ, Shah V, Tunariu N, Kaiser MF, Messiou C (2018) Apparent diffusion coefficient of vertebral haemangiomas allows differentiation from malignant focal deposits in whole-body diffusion-weighted MRI. Eur Radiol 28:1687–1691. https://doi.org/10.1007/s00330-017-5079-2

    Article  PubMed  Google Scholar 

  80. Dutoit JC, Verstraete KL (2016) MRI in multiple myeloma: a pictorial review of diagnostic and post-treatment findings. Insights Imaging

  81. Lacognata C, Crimì F, Guolo A et al (2017) Diffusion-weighted whole-body MRI for evaluation of early response in multiple myeloma. Clin Radiol. https://doi.org/10.1016/j.crad.2017.05.004

  82. Pearce T, Philip S, Brown J et al (2012) Bone metastases from prostate, breast and multiple myeloma: differences in lesion conspicuity at short-tau inversion recovery and diffusion-weighted MRI. Br J Radiol. https://doi.org/10.1259/bjr/30649204

  83. Terpos E, Kleber M, Engelhardt M et al (2015) European myeloma network guidelines for the management of multiple myeloma-related complications. Haematologica. https://doi.org/10.3324/haematol.2014.117176

  84. Wu LM, Gu HY, Zheng J et al (2011) Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis. J Magn Reson Imaging. https://doi.org/10.1002/jmri.22608

  85. Lecouvet FE, El Mouedden J, Collette L et al (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. https://doi.org/10.1016/j.eururo.2012.02.020

  86. Hillengass J, Stoll J, Zechmann CM, Kunz C, Wagner B, Heiss C, Sumkauskaite M, Moehler TM, Schlemmer HP, Goldschmidt H, Delorme S (2015) The application of Gadopentate-Dimeneglumin has no impact on progression free and overall survival as well as renal function in patients with monoclonal plasma cell disorders if general precautions are taken. Eur Radiol 25:745–750. https://doi.org/10.1007/s00330-014-3458-5

    Article  CAS  PubMed  Google Scholar 

  87. Verstraete KL, Van der Woude H-J, Hogendoorn PCW et al (2007) Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging. https://doi.org/10.1002/jmri.1880060210

  88. Dutoit JC, Vanderkerken MA, Verstraete KL (2013) Value of whole body MRI and dynamic contrast enhanced MRI in the diagnosis, follow-up and evaluation of disease activity and extent in multiple myeloma. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2013.04.012

  89. Lavini C, de Jonge MC, van de Sande MGH et al (2007) Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magn Reson Imaging. https://doi.org/10.1016/j.mri.2006.10.021

  90. García-Figueiras R, Padhani AR, Beer AJ et al (2015) Imaging of tumor angiogenesis for radiologists-part 1: biological and technical basis. Curr Probl Diagn Radiol

  91. Dimopoulos MA, Hillengass J, Usmani S et al (2015) Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol. https://doi.org/10.1200/JCO.2014.57.9961

  92. Boellaard R, Delgado-Bolton R, Oyen WJG, et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging

  93. Valls L, Badve C, Avril S et al (2016) FDG-PET imaging in hematological malignancies. Blood Rev

  94. Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) 18F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. https://doi.org/10.2967/jnumed.109.067892

  95. El Arfani C, De Veirman K, Maes K et al (2018) Metabolic features of multiple myeloma. Int J Mol Sci

  96. Zhang XD, Deslandes E, Villedieu M et al (2006) Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer Res

  97. Zhang D, Li J, Wang F et al (2014) 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett

  98. Bolzoni M, Chiu M, Accardi F et al (2016) Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target. Blood. https://doi.org/10.1182/blood-2016-01-690743

  99. Moreau P, Attal M, Caillot D et al (2017) Prospective evaluation of magnetic resonance imaging and [18F]fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial. In: Journal of Clinical Oncology

    Google Scholar 

  100. Terpos E, Dimopoulos MA, Sezer O (2007) The effect of novel anti-myeloma agents on bone metabolism of patients with multiple myeloma. Leukemia

  101. Zamagni E, Patriarca F, Nanni C et al (2011) Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. https://doi.org/10.1182/blood-2011-06-361386

  102. Bannas P, Hentschel HB, Bley TA et al (2012) Diagnostic performance of whole-body MRI for the detection of persistent or relapsing disease in multiple myeloma after stem cell transplantation. Eur Radiol. https://doi.org/10.1007/s00330-012-2445-y

  103. Cavo M, Terpos E, Nanni C et al (2017) Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol

  104. Lückerath K, Lapa C, Albert C et al (2015) 11C-methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma. Oncotarget. https://doi.org/10.18632/oncotarget.3053

  105. Ho CL, Chen S, Leung YL et al (2014) 11C-acetate PET/CT for metabolic characterization of multiple myeloma: a comparative study with 18F-FDG PET/CT. J Nucl Med. https://doi.org/10.2967/jnumed.113.131169

  106. Brigle K, Pierre A, Finley-Oliver E et al (2017) Myelosuppression, bone disease, and acute renal failure: evidence-based recommendations for oncologic emergencies. Clin J Oncol Nurs

  107. Terpos E, Christoulas D, Gavriatopoulou M (2018) Biology and treatment of myeloma related bone disease. Metabolism. https://doi.org/10.1016/j.metabol.2017.11.012

  108. Avva R, Vanhemert RL, Barlogie B et al (2001) CT-guided biopsy of focal lesions in patients with multiple myeloma may reveal new and more aggressive cytogenetic abnormalities. Am J Neuroradiol

  109. Mink J (1986) Percutaneous bone biopsy in the patient with known or suspected osseous metastases. Radiology. https://doi.org/10.1148/radiology.161.1.3763865

  110. Thumallapally N, Meshref A, Mousa M, Terjanian T (2017) Solitary plasmacytoma: population-based analysis of survival trends and effect of various treatment modalities in the USA. BMC Cancer. https://doi.org/10.1186/s12885-016-3015-5

  111. Dimopoulos M, Kyle R, Fermand JP et al (2011) Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. In: Blood

    Google Scholar 

  112. Engelhardt M, Udi J, Kleber M et al (2010) European myeloma network: the 3rd Trialist forum consensus statement from the European experts meeting on multiple myeloma. Leuk Lymphoma

  113. Melton LJ, Crowson CS, O’Fallon WM (1999) Fracture incidence in Olmsted County, Minnesota: Comparison of urban with rural rates and changes in urban rates over time. Osteoporos Int. https://doi.org/10.1007/s001980050113

  114. Melton LJ, Kyle RA, Achenbach SJ et al (2005) Fracture risk with multiple myeloma: a population-based study. J Bone Miner Res. https://doi.org/10.1359/JBMR.041131

  115. Cotten A, Dewatre F, Cortet B et al (1996) Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology. https://doi.org/10.1148/radiology.200.2.8685351

  116. Ha KY, Kim YH, Kim HW (2013) Multiple myeloma and epidural spinal cord compression: case presentation and a spine surgeon’s perspective. J Korean Neurosurg Soc. https://doi.org/10.3340/jkns.2013.54.2.151

  117. Wallington M, Mendis S, Premawardhana U et al (1997) Local control and survival in spinal cord compression from lymphoma and myeloma. Radiother Oncol. https://doi.org/10.1016/S0167-8140(96)01858-0

  118. Kyriakou C, Molloy S, Vrionis F, Alberico R, Bastian L, Zonder JA, Giralt S, Raje N, Kyle RA, Roodman DGD, Dimopoulos MA, Rajkumar SV, Durie BBG, Terpos E (2019) The role of cement augmentation with percutaneous vertebroplasty and balloon kyphoplasty for the treatment of vertebral compression fractures in multiple myeloma: a consensus statement from the International Myeloma Working Group (IMWG). Blood Cancer J 9:1–10. https://doi.org/10.1038/s41408-019-0187-7

    Article  CAS  Google Scholar 

  119. Soutar R, Lucraft H, Jackson G et al (2004) Guidelines on the diagnosis and management of solitary plasmacytoma of bone and solitary extramedullary plasmacytoma. Br J Haematol

  120. Baerlocher MO, Saad WE, Dariushnia S et al (2014) Quality improvement guidelines for percutaneous vertebroplasty. J Vasc Interv Radiol. https://doi.org/10.1016/j.jvir.2013.09.004

  121. Jensen ME, McGraw JK, Cardella JF (2011) Position statement on percutaneous vertebral augmentation: a consensus statement developed by the American Society of Interventional and Therapeutic Neuroradiology, Society of Interventional Radiology, American Association of Neurological Surgeons/Congres. J Neurointerv Surg

  122. Calmels V, Vallée JN, Rose M, Chiras J (2007) Osteoblastic and mixed spinal metastases: evaluation of the analgesic efficacy of percutaneous vertebroplasty. Am J Neuroradiol. https://doi.org/10.1016/s1073-5437(08)70967-7

  123. Zheng L, Chen Z, Sun M et al (2014) A preliminary study of the safety and efficacy of radiofrequency ablation with percutaneous kyphoplasty for thoracolumbar vertebral metastatic tumor treatment. Med Sci Monit. https://doi.org/10.12659/MSM.889742

  124. Wallace AN, Greenwood TJ, Jennings JW (2015) Radiofrequency ablation and vertebral augmentation for palliation of painful spinal metastases. J Neuro-Oncol. https://doi.org/10.1007/s11060-015-1813-2

  125. Erdem E, Akdol S, Amole A et al (2013) Radiofrequency-targeted vertebral augmentation for the treatment of vertebral compression fractures as a result of multiple myeloma. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0b013e3182959695

  126. Barbero S, Casorzo I, Durando M, Mattone G, Tappero C, Venturi C, Gandini G (2008) Percutaneous vertebroplasty: the follow-up. Radiol Med 113:101–113. https://doi.org/10.1007/s11547-008-0234-0

    Article  CAS  PubMed  Google Scholar 

  127. Gozzetti A, Cerase A, Defina M, Bocchia M (2012) Plasmacytoma of the skull. Eur J Haematol

  128. Cerase A, Tarantino A, Gozzetti A et al (2008) Intracranial involvement in plasmacytomas and multiple myeloma: a pictorial essay. Neuroradiology

  129. Gozzetti A, Cerase A, Tarantino A et al (2007) Multiple myeloma involving the cavernous sinus: a report of 3 cases and response to bortezomib. Clin Lymphoma Myeloma. https://doi.org/10.3816/CLM.2007.n.017

  130. Jurczyszyn A, Grzasko N, Gozzetti A et al (2016) Central nervous system involvement by multiple myeloma: a multi-institutional retrospective study of 172 patients in daily clinical practice. Am J Hematol. https://doi.org/10.1002/ajh.24351

  131. Rosenberg S, Shapur N, Gofrit O, Or R (2010) Plasmacytoma of the testis in a patient with previous multiple myeloma: is the testis a sanctuary site? J Clin Oncol. https://doi.org/10.1200/JCO.2009.27.6519

  132. Anghel G, Petti N, Remotti D et al (2002) Testicular plasmacytoma: report of a case and review of the literature. Am J Hematol. https://doi.org/10.1002/ajh.10174

  133. Gozzetti A, Cerase A, Lotti F et al (2012) Extramedullary intracranial localization of multiple myeloma and treatment with novel agents: a retrospective survey of 50 patients. Cancer. https://doi.org/10.1002/cncr.26447

  134. Ooi GC, Chim JCS, Au WY, Khong PL (2006) Radiologic manifestations of primary solitary extramedullary and multiple solitary plasmacytomas. Am J Roentgenol

  135. Sanchorawala V (2006) Light-chain (AL) amyloidosis: diagnosis and treatment. Clin J Am Soc Nephrol

  136. Lee SP, Park JB, Kim HK et al (2019) Contemporary imaging diagnosis of cardiac amyloidosis. J Cardiovasc Imaging

  137. Palladini G, Hegenbart U, Milani P et al (2014) A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood. https://doi.org/10.1182/blood-2014-04-570010

  138. Kawashima A, Alleman WG, Takahashi N et al (2011) Imaging evaluation of amyloidosis of the urinary tract and retroperitoneum. Radiographics. https://doi.org/10.1148/rg.316115519

  139. Czeyda-Pommersheim F, Hwang M, Chen SS et al (2015) Amyloidosis: modern cross-sectional imaging. Radiographics. https://doi.org/10.1148/rg.2015140179

  140. Dispenzieri A (2017) POEMS syndrome: 2017 update on diagnosis, risk stratification, and management. Am J Hematol. https://doi.org/10.1002/ajh.24802

  141. Paiva B, García-Sanz R, San Miguel JF (2016) Multiple myeloma minimal residual disease. In: Cancer Treatment and Research

    Google Scholar 

  142. Kumar S, Paiva B, Anderson KC et al (2016) International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol

  143. Zamagni E, Cavo M (2012) The role of imaging techniques in the management of multiple myeloma. Br J Haematol

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Picchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Multiple myeloma (MM) is the main disorder of the bone marrow in adults representing about 1% of all neoplastic disease. MM is the second most common hematologic malignancy after chronic lymphatic leukemia.

• Conventional skeletal survey lacks of sensitivity, with a false-negative rate ranging from 30 to 70%, leading to misdiagnosis or underestimation of the disease stadium.

• Thanks to its greater sensitivity and high-contrast the whole-body low-dose computed tomography (WBLD-CT) allows the evaluation of bone, medullary and extramedullary involvement in MM reducing the effective radiation dose.

• The whole-body magnetic resonance imaging (WB-MRI) is the most sensitive imaging technique for detecting skeletal and extra-skeletal MM invasion. Moreover, the multiparametric information obtained by MRI may be useful for assessment of treatment response by qualitative and quantitative analyses of the perfusion and diffusion data.

• 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography has been proved to report a good sensitivity and specificity for assessment of medullary and extramedullary disease in patients with MM and for assessment of treatment response.

• Interventional radiology can be useful in multiple myeloma specially to treat complications by percutaneous vertebroplasty, balloon kyphoplasty and radiofrequency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Giuliano, F., Picchi, E., Muto, M. et al. Radiological imaging in multiple myeloma: review of the state-of-the-art. Neuroradiology 62, 905–923 (2020). https://doi.org/10.1007/s00234-020-02417-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02417-9

Keywords

Navigation