Skip to main content

Advertisement

Log in

Dysplasia and overgrowth: magnetic resonance imaging of pediatric brain abnormalities secondary to alterations in the mechanistic target of rapamycin pathway

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

The current classification of malformations of cortical development is based on the type of disrupted embryological process (cell proliferation, migration, or cortical organization/post-migrational development) and the resulting morphological anomalous pattern of findings. An ideal classification would include knowledge of biological pathways. It has recently been demonstrated that alterations affecting the mechanistic target of rapamycin (mTOR) signaling pathway result in diverse abnormalities such as dysplastic megalencephaly, hemimegalencephaly, ganglioglioma, dysplastic cerebellar gangliocytoma, focal cortical dysplasia type IIb, and brain lesions associated with tuberous sclerosis. We review the neuroimaging findings in brain abnormalities related to alterations in the mTOR pathway, following the emerging trend from morphology towards genetics in the classification of malformations of cortical development. This approach improves the understanding of anomalous brain development and allows precise diagnosis and potentially targeted therapies that may regulate mTOR pathway function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ADC:

apparent diffusion coefficient

AKT3:

protein kinase B

COLD:

Cowden-Lhermitte-Duclos syndrome

DEPDC5:

DEP domain-containing protein 5

DGC:

dysplastic gangliocytoma of the cerebellum

DNET:

dysembryoplastic neuroepithelial tumor

FCD:

focal cortical dysplasia

GATOR1:

gap activity towards rags 1

HME:

hemimegalencephaly

MCAP:

megalencephaly-capillary malformation syndrome

MCD:

malformations of cortical development

MPPH:

megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome

mTOR:

mechanistic (or mammalian) target of rapamycin

NF1:

neurofibromatosis type 1

NPRL2:

nitrogen permease regulator 2-like protein

NPRL3:

nitrogen permease regulator 3-like protein

PDK1:

phosphoinositide-dependent kinase 1

PI3K:

phosphatidylinositol-3-kinase

PTEN:

phosphatase and tensin homolog

SEGA:

dubependymal giant cell astrocytoma

SEN:

dubependymal nodules

SWI:

dusceptibility-weighted imaging

TSC:

tuberous sclerosis complex

References

  1. Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135(Pt 5):1348–1369. https://doi.org/10.1093/brain/aws019

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ellison D, Love S, Chimelli L, Harding B, Lowe J, Vinters H, Brandner S, Yong W (2013) Malformations. In: Ellison D, Love S (eds) Neuropathology: a reference text of CNS pathology. 3rd edn. Elsevier Mosby, Edinburgh, pp 57-118.

  3. Jansen LA, Mirzaa GM, Ishak GE, O'Roak BJ, Hiatt JB, Roden WH, Gunter SA, Christian SL, Collins S, Adams C, Riviere JB, St-Onge J, Ojemann JG, Shendure J, Hevner RF, Dobyns WB (2015) PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 138(Pt 6):1613–1628. https://doi.org/10.1093/brain/awv045

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mirzaa GM, Campbell CD, Solovieff N, Goold C, Jansen LA, Menon S, Timms AE, Conti V, Biag JD, Adams C, Boyle EA, Collins S, Ishak G, Poliachik S, Girisha KM, Yeung KS, Chung BHY, Rahikkala E, Gunter SA, McDaniel SS, Macmurdo CF, Bernstein JA, Martin B, Leary R, Mahan S, Liu S, Weaver M, Doerschner M, Jhangiani S, Muzny DM, Boerwinkle E, Gibbs RA, Lupski JR, Shendure J, Saneto RP, Novotny EJ, Wilson CJ, Sellers WR, Morrissey M, Hevner RF, Ojemann JG, Guerrini R, Murphy LO, Winckler W, Dobyns WB (2016) Association of mTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol 73(7):836–845. https://doi.org/10.1001/jamaneurol.2016.0363

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mirzaa GM, Poduri A (2014) Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. Am J Med Genet C Semin Med Genet 166C(2):156–172. https://doi.org/10.1002/ajmg.c.31401

    Article  PubMed  Google Scholar 

  6. Lipton JO, Sahin M (2014) The neurology of mTOR. Neuron 84(2):275–291. https://doi.org/10.1016/j.neuron.2014.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J (2017) Molecular neurobiology of mTOR. Neuroscience 341:112–153. https://doi.org/10.1016/j.neuroscience.2016.11.017. Epub;%2016 Nov 23.:112-153

    Article  CAS  PubMed  Google Scholar 

  8. Malik AR, Urbanska M, Macias M, Skalecka A, Jaworski J (2013) Beyond control of protein translation: what we have learned about the non-canonical regulation and function of mammalian target of rapamycin (mTOR). Biochim Biophys Acta 1834(7):1434–1448

    Article  CAS  PubMed  Google Scholar 

  9. Jeong A, Wong M (2016) mTOR inhibitors in children: current indications and future directions in neurology. Curr Neurol Neurosci Rep 16(12):102. https://doi.org/10.1007/s11910-016-0708-8

    Article  PubMed  Google Scholar 

  10. Crino PB (2016) The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol 12(7):379–392

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen LH, Brewster AL, Clark ME, Regnier-Golanov A, Sunnen CN, Patil VV, D'Arcangelo G, Anderson AE (2015) mTOR inhibition suppresses established epilepsy in a mouse model of cortical dysplasia. Epilepsia 56(4):636–646. https://doi.org/10.1111/epi.12946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lim JS, Kim WI, Kang HC, Kim SH, Park AH, Park EK, Cho YW, Kim S, Kim HM, Kim JA, Kim J, Rhee H, Kang SG, Kim HD, Kim D, Kim DS, Lee JH (2015) Brain somatic mutations in mTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med 21(4):395–400

    Article  CAS  PubMed  Google Scholar 

  13. French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, Curatolo P, de Vries PJ, Dlugos DJ, Berkowitz N, Voi M, Peyrard S, Pelov D, Franz DN (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388(10056):2153–2163. https://doi.org/10.1016/S0140-6736(16)31419-2

    Article  CAS  PubMed  Google Scholar 

  14. Krueger DA, Wilfong AA, Holland-Bouley K, Anderson AE, Agricola K, Tudor C, Mays M, Lopez CM, Kim MO, Franz DN (2013) Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 74(5):679–687

    Article  CAS  PubMed  Google Scholar 

  15. MacKeigan JP, Krueger DA (2015) Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. Neuro Oncol 17(12):1550–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blumcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, Jacques TS, Avanzini G, Barkovich AJ, Battaglia G, Becker A, Cepeda C, Cendes F, Colombo N, Crino P, Cross JH, Delalande O, Dubeau F, Duncan J, Guerrini R, Kahane P, Mathern G, Najm I, Ozkara C, Raybaud C, Represa A, Roper SN, Salamon N, Schulze-Bonhage A, Tassi L, Vezzani A, Spreafico R (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 52(1):158–174. https://doi.org/10.1111/j.1528-1167.2010.02777.x

    Article  PubMed  Google Scholar 

  17. Blumcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CG, Pfafflin M, Elger C, Widman G, Schramm J, Becker A, Braun KP, Leijten F, Baayen JC, Aronica E, Chassoux F, Hamer H, Stefan H, Rossler K, Thom M, Walker MC, Sisodiya SM, Duncan JS, McEvoy AW, Pieper T, Holthausen H, Kudernatsch M, Meencke HJ, Kahane P, Schulze-Bonhage A, Zentner J, Heiland DH, Urbach H, Steinhoff BJ, Bast T, Tassi L, Lo Russo G, Ozkara C, Oz B, Krsek P, Vogelgesang S, Runge U, Lerche H, Weber Y, Honavar M, Pimentel J, Arzimanoglou A, Ulate-Campos A, Noachtar S, Hartl E, Schijns O, Guerrini R, Barba C, Jacques TS, Cross JH, Feucht M, Muhlebner A, Grunwald T, Trinka E, Winkler PA, Gil-Nagel A, Toledano Delgado R, Mayer T, Lutz M, Zountsas B, Garganis K, Rosenow F, Hermsen A, von Oertzen TJ, Diepgen TL, Avanzini G, Consortium E (2017) Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med 377(17):1648–1656. https://doi.org/10.1056/NEJMoa1703784

    Article  PubMed  Google Scholar 

  18. Crino PB (2015) Focal cortical dysplasia. Semin Neurol 35(3):201–208

    Article  PubMed  Google Scholar 

  19. Krsek P, Maton B, Korman B, Pacheco-Jacome E, Jayakar P, Dunoyer C, Rey G, Morrison G, Ragheb J, Vinters HV, Resnick T, Duchowny M (2008) Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann Neurol 63(6):758–769

    Article  PubMed  Google Scholar 

  20. Sarnat HB, Flores-Sarnat L (2015) Infantile tauopathies: hemimegalencephaly; tuberous sclerosis complex; focal cortical dysplasia 2; ganglioglioma. Brain and Development 37(6):553–562. https://doi.org/10.1016/j.braindev.2014.08.010

    Article  PubMed  Google Scholar 

  21. Lim KC, Crino PB (2013) Focal malformations of cortical development: new vistas for molecular pathogenesis. Neuroscience 252:262–276. https://doi.org/10.1016/j.neuroscience.2013.07.037. Epub;%2013 Jul 25.:262-276

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Tsai V, Parker WE, Aronica E, Baybis M, Crino PB (2012) Detection of human papillomavirus in human focal cortical dysplasia type IIb. Ann Neurol 72(6):881–892

    Article  CAS  PubMed  Google Scholar 

  23. Weckhuysen S, Marsan E, Lambrecq V, Marchal C, Morin-Brureau M, An-Gourfinkel I, Baulac M, Fohlen M, Kallay ZC, Seeck M, de la Grange P, Dermaut B, Meurs A, Thomas P, Chassoux F, Leguern E, Picard F, Baulac S (2016) Involvement of GATOR complex genes in familial focal epilepsies and focal cortical dysplasia. Epilepsia 57(6):994–1003. https://doi.org/10.1111/epi.13391

    Article  CAS  PubMed  Google Scholar 

  24. Kabat J, Krol P (2012) Focal cortical dysplasia—review. Pol J Radiol 77(2):35–43. https://doi.org/10.12659/PJR.882968

    Article  PubMed  PubMed Central  Google Scholar 

  25. Soares BP, Porter SG, Saindane AM, Dehkharghani S, Desai NK (2016) Utility of double inversion recovery MRI in paediatric epilepsy. BrJ Radiol 89(1057):20150325. https://doi.org/10.1259/bjr.20150325

    Article  Google Scholar 

  26. Barkovich A, Raybaud C (2012) Congenital malformations of the brain and skull. In: Barkovich A, Raybaud C (eds) Pediatric neuroimaging, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 367–568

    Google Scholar 

  27. Hofman PA, Fitt GJ, Harvey AS, Kuzniecky RI, Jackson G (2011) Bottom-of-sulcus dysplasia: imaging features. AJR Am J Roentgenol 196(4):881–885. https://doi.org/10.2214/AJR.10.4423

    Article  PubMed  Google Scholar 

  28. Colombo N, Tassi L, Deleo F, Citterio A, Bramerio M, Mai R, Sartori I, Cardinale F, Lo RG, Spreafico R (2012) Focal cortical dysplasia type IIa and IIb: MRI aspects in 118 cases proven by histopathology. Neuroradiology 54(10):1065–1077. https://doi.org/10.1007/s00234-012-1049-1

    Article  PubMed  Google Scholar 

  29. De Ciantis A, Barba C, Tassi L, Cosottini M, Tosetti M, Costagli M, Bramerio M, Bartolini E, Biagi L, Cossu M, Pelliccia V, Symms MR, Guerrini R (2016) 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia 57(3):445–454. https://doi.org/10.1111/epi.13313

    Article  PubMed  Google Scholar 

  30. Wintermark P, Lechpammer M, Warfield SK, Kosaras B, Takeoka M, Poduri A, Madsen JR, Bergin AM, Whalen S, Jensen FE (2013) Perfusion imaging of focal cortical dysplasia using arterial spin labeling: correlation with histopathological vascular density. J Child Neurol 28(11):1474–1482. https://doi.org/10.1177/0883073813488666

    Article  PubMed  PubMed Central  Google Scholar 

  31. Blauwblomme T, Boddaert N, Chemaly N, Chiron C, Pages M, Varlet P, Bourgeois M, Bahi-Buisson N, Kaminska A, Grevent D, Brunelle F, Sainte-Rose C, Archambaud F, Nabbout R (2014) Arterial spin labeling MRI: a step forward in non-invasive delineation of focal cortical dysplasia in children. Epilepsy Res 108(10):1932–1939. https://doi.org/10.1016/j.eplepsyres.2014.09.029

    Article  PubMed  Google Scholar 

  32. Guerrini R, Duchowny M, Jayakar P, Krsek P, Kahane P, Tassi L, Melani F, Polster T, Andre VM, Cepeda C, Krueger DA, Cross JH, Spreafico R, Cosottini M, Gotman J, Chassoux F, Ryvlin P, Bartolomei F, Bernasconi A, Stefan H, Miller I, Devaux B, Najm I, Giordano F, Vonck K, Barba C, Blumcke I (2015) Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 56(11):1669–1686. https://doi.org/10.1111/epi.13200

    Article  CAS  PubMed  Google Scholar 

  33. Bronen RA, Vives KP, Kim JH, Fulbright RK, Spencer SS, Spencer DD (1997) Focal cortical dysplasia of Taylor, balloon cell subtype: MR differentiation from low-grade tumors. AJNR Am J Neuroradiol 18(6):1141–1151

    CAS  PubMed  Google Scholar 

  34. Tortori-Donati P, Rossi A, Biancheri R (2005) Brain malformations. In: Tortori-Donati P, Rossi A (eds) Pediatric Neuroradiology, vol 1. Springer-Verlag, Berlin Heidelberg, pp 71–198

    Chapter  Google Scholar 

  35. Baskin HJ Jr (2008) The pathogenesis and imaging of the tuberous sclerosis complex. Pediatr Radiol 38(9):936–952

    Article  PubMed  Google Scholar 

  36. Curatolo P (2015) Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr Neurol 52(3):281–289

    Article  PubMed  Google Scholar 

  37. Stafstrom CE, Staedtke V, Comi AM (2017) Epilepsy mechanisms in neurocutaneous disorders: tuberous sclerosis complex, neurofibromatosis type 1, and Sturge-Weber syndrome. Front Neurol 8:87. https://doi.org/10.3389/fneur.2017.00087. eCollection;%2017.:87

    Article  PubMed  PubMed Central  Google Scholar 

  38. Krishnan A, Kaza RK, Vummidi DR (2016) Cross-sectional imaging review of tuberous sclerosis. Radiol Clin North Am 54(3):423–440

    Article  PubMed  Google Scholar 

  39. Aronow ME, Nakagawa JA, Gupta A, Traboulsi EI, Singh AD (2012) Tuberous sclerosis complex: genotype/phenotype correlation of retinal findings. Ophthalmology 119(9):1917–1923. https://doi.org/10.1016/j.ophtha.2012.03.020

    Article  PubMed  Google Scholar 

  40. Curatolo P, Maria BL (2013) Tuberous sclerosis. Handb Clin Neurol 111:323–331. https://doi.org/10.1016/B978-0-444-52891-9.00038-5

    Article  CAS  PubMed  Google Scholar 

  41. Crino PB, Aronica E, Baltuch G, Nathanson KL (2010) Biallelic TSC gene inactivation in tuberous sclerosis complex. Neurology 74(21):1716–1723. https://doi.org/10.1212/WNL.0b013e3181e04325

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bosemani T, Huisman TA, Poretti A (2016) Pediatric neurocutaneous syndromes with cerebellar involvement. Neuroimaging Clin N Am 26(3):417–434. https://doi.org/10.1016/j.nic.2016.03.008

    Article  PubMed  Google Scholar 

  43. Ridler K, Suckling J, Higgins N, Bolton P, Bullmore E (2004) Standardized whole brain mapping of tubers and subependymal nodules in tuberous sclerosis complex. J Child Neurol 19(9):658–665. https://doi.org/10.1177/08830738040190090501

    Article  PubMed  Google Scholar 

  44. Rovira A, Ruiz-Falco ML, Garcia-Esparza E, Lopez-Laso E, Macaya A, Malaga I, Vazquez E, Vicente J (2014) Recommendations for the radiological diagnosis and follow-up of neuropathological abnormalities associated with tuberous sclerosis complex. J Neuro-Oncol 118(2):205–223. https://doi.org/10.1007/s11060-014-1429-y

    Article  Google Scholar 

  45. Tortori-Donati P, Rossi A, Biancheri R, Andreula C (2005) Phakomatoses. In: Tortori-Donati P, Rossi A (eds) Pediatric neuroradiology. Springer, Berlin, pp 763–818. https://doi.org/10.1007/3-540-26398-5_16

    Chapter  Google Scholar 

  46. Jahodova A, Krsek P, Kyncl M, Jezdik P, Kudr M, Komarek V, Jayakar P, Miller I, Resnick T, Duchowny M (2014) Distinctive MRI features of the epileptogenic zone in children with tuberous sclerosis. Eur J Radiol 83(4):703–709. https://doi.org/10.1016/j.ejrad.2013.12.024

    Article  CAS  PubMed  Google Scholar 

  47. Widjaja E, Simao G, Mahmoodabadi SZ, Ochi A, Snead OC, Rutka J, Otsubo H (2010) Diffusion tensor imaging identifies changes in normal-appearing white matter within the epileptogenic zone in tuberous sclerosis complex. Epilepsy Res 89(2–3):246–253. https://doi.org/10.1016/j.eplepsyres.2010.01.008

    Article  PubMed  Google Scholar 

  48. Chandra PS, Salamon N, Huang J, Wu JY, Koh S, Vinters HV, Mathern GW (2006) FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia 47(9):1543–1549. https://doi.org/10.1111/j.1528-1167.2006.00627.x

    Article  PubMed  Google Scholar 

  49. Yogi A, Hirata Y, Karavaeva E, Harris RJ, Wu JY, Yudovin SL, Linetsky M, Mathern GW, Ellingson BM, Salamon N (2015) DTI of tuber and perituberal tissue can predict epileptogenicity in tuberous sclerosis complex. Neurology 85(23):2011–2015. https://doi.org/10.1212/WNL.0000000000002202

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chugani HT, Luat AF, Kumar A, Govindan R, Pawlik K, Asano E (2013) Alpha-[11C]-methyl-L-tryptophan—PET in 191 patients with tuberous sclerosis complex. Neurology 81(7):674–680. https://doi.org/10.1212/WNL.0b013e3182a08f3f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ertan G, Arulrajah S, Tekes A, Jordan L, Huisman TA (2010) Cerebellar abnormality in children and young adults with tuberous sclerosis complex: MR and diffusion weighted imaging findings. J Neuroradiol 37(4):231–238. https://doi.org/10.1016/j.neurad.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  52. Vaughn J, Hagiwara M, Katz J, Roth J, Devinsky O, Weiner H, Milla S (2013) MRI characterization and longitudinal study of focal cerebellar lesions in a young tuberous sclerosis cohort. AJNR Am J Neuroradiol 34(3):655–659. https://doi.org/10.3174/ajnr.A3260

    Article  CAS  PubMed  Google Scholar 

  53. Katz JS, Milla SS, Wiggins GC, Devinsky O, Weiner HL, Roth J (2012) Intraventricular lesions in tuberous sclerosis complex: a possible association with the caudate nucleus. J Neurosurg Pediatr 9(4):406–413

    Article  PubMed  Google Scholar 

  54. Kingsley DP, Kendall BE, Fitz CR (1986) Tuberous sclerosis: a clinicoradiological evaluation of 110 cases with particular reference to atypical presentation. Neuroradiology 28(1):38–46. https://doi.org/10.1007/BF00341764

    Article  CAS  PubMed  Google Scholar 

  55. Curatolo P, Bombardieri R, Jozwiak S (2008) Tuberous sclerosis. Lancet 372(9639):657–668. https://doi.org/10.1016/S0140-6736(08)61279-9

    Article  CAS  PubMed  Google Scholar 

  56. Guerrini R, Dobyns WB (2014) Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 13(7):710–726. https://doi.org/10.1016/S1474-4422(14)70040-7

    Article  PubMed  PubMed Central  Google Scholar 

  57. Parrini E, Conti V, Dobyns WB, Guerrini R (2016) Genetic basis of brain malformations. Mol Syndromol 7(4):220–233. https://doi.org/10.1159/000448639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Keppler-Noreuil KM, Parker VE, Darling TN, Martinez-Agosto JA (2016) Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. Am J Med Genet C Semin Med Genet 172(4):402–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mackay MT, Becker LE, Chuang SH, Otsubo H, Chuang NA, Rutka J, Ben-Zeev B, Snead OC III, Weiss SK (2003) Malformations of cortical development with balloon cells: clinical and radiologic correlates. Neurology 60(4):580–587. https://doi.org/10.1212/01.WNL.0000044053.09023.91

    Article  CAS  PubMed  Google Scholar 

  60. Lee JH, Huynh M, Silhavy JL, Kim S, xon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG (2012) De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44(8):941–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mirzaa GM, Conway RL, Gripp KW, Lerman-Sagie T, Siegel DH, deVries LS, Lev D, Kramer N, Hopkins E, Graham JM Jr, Dobyns WB (2012) Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am J Med Genet A 158A(2):269–291. https://doi.org/10.1002/ajmg.a.34402

    Article  PubMed  Google Scholar 

  62. Mirzaa GM, Riviere JB, Dobyns WB (2013) Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. Am J Med Genet C Semin Med Genet 163C(2):122–130. https://doi.org/10.1002/ajmg.c.31361

    Article  PubMed  Google Scholar 

  63. Flores-Sarnat L (2002) Hemimegalencephaly: part 1. Genetic, clinical, and imaging aspects. J Child Neurol 17(5):373–384. https://doi.org/10.1177/088307380201700512

    Article  PubMed  Google Scholar 

  64. Barkovich AJ, Chuang SH (1990) Unilateral megalencephaly: correlation of MR imaging and pathologic characteristics. AJNR Am J Neuroradiol 11(3):523–531

    CAS  PubMed  Google Scholar 

  65. Sato N, Ota M, Yagishita A, Miki Y, Takahashi T, Adachi Y, Nakata Y, Sugai K, Sasaki M (2008) Aberrant midsagittal fiber tracts in patients with hemimegalencephaly. AJNR Am J Neuroradiol 29(4):823–827. https://doi.org/10.3174/ajnr.A0919

    Article  CAS  PubMed  Google Scholar 

  66. Wolpert SM, Cohen A, Libenson MH (1994) Hemimegalencephaly: a longitudinal MR study. AJNR Am J Neuroradiol 15(8):1479–1482

    CAS  PubMed  Google Scholar 

  67. Koeller KK, Henry JM (2001) From the archives of the AFIP: superficial gliomas: radiologic-pathologic correlation. Armed Forces Institute of Pathology. Radiographics 21(6):1533–1556. https://doi.org/10.1148/radiographics.21.6.g01nv051533

    Article  CAS  PubMed  Google Scholar 

  68. Raybaud C (2016) Cerebral hemispheric low-grade glial tumors in children: preoperative anatomic assessment with MRI and DTI. Childs Nerv Syst 32(10):1799–1811. https://doi.org/10.1007/s00381-016-3188-x

    Article  PubMed  Google Scholar 

  69. Prabowo AS, Iyer AM, Veersema TJ, Anink JJ, Schouten-van Meeteren AY, Spliet WG, van Rijen PC, Ferrier CH, Capper D, Thom M, Aronica E (2014) Braf v600e mutation is associated with mTOR signaling activation in glioneuronal tumors. Brain Pathol 24(1):52–66. https://doi.org/10.1111/bpa.12081

    Article  CAS  PubMed  Google Scholar 

  70. Castillo M, Davis PC, Takei Y, Hoffman JC Jr (1990) Intracranial ganglioglioma: MR, CT, and clinical findings in 18 patients. AJR Am J Roentgenol 154(3):607–612. https://doi.org/10.2214/ajr.154.3.2106228

    Article  CAS  PubMed  Google Scholar 

  71. Otsubo H, Hoffman HJ, Humphreys RP, Hendrick EB, Drake JM, Hwang PA, Becker LE, Chuang SH (1990) Evaluation, surgical approach and outcome of seizure patients with gangliogliomas. Pediatr Neurosurg 16(4–5):208–212

    Article  PubMed  Google Scholar 

  72. Hariri OR, Khachekian A, Muilli D, Amin J, Minassian T, Berman B, Ritter Y, Siddiqi J (2013) Acute-onset cerebellar symptoms in Lhermitte-Duclos disease: case report. Cerebellum 12(1):127–130. https://doi.org/10.1007/s12311-012-0394-2

    Article  PubMed  Google Scholar 

  73. Nowak DA, Trost HA (2002) Lhermitte-Duclos disease (dysplastic cerebellar gangliocytoma): a malformation, hamartoma or neoplasm? Acta Neurol Scand 105(3):137–145. https://doi.org/10.1034/j.1600-0404.2002.1r127.x

    Article  CAS  PubMed  Google Scholar 

  74. Abel TW, Baker SJ, Fraser MM, Tihan T, Nelson JS, Yachnis AT, Bouffard JP, Mena H, Burger PC, Eberhart CG (2005) Lhermitte-Duclos disease: a report of 31 cases with immunohistochemical analysis of the PTEN/AKT/mTOR pathway. J Neuropathol Exp Neurol 64(4):341–349. https://doi.org/10.1093/jnen/64.4.341

    Article  PubMed  Google Scholar 

  75. Klisch J, Juengling F, Spreer J, Koch D, Thiel T, Buchert M, Arnold S, Feuerhake F, Schumacher M (2001) Lhermitte-Duclos disease: assessment with MR imaging, positron emission tomography, single-photon emission CT, and MR spectroscopy. AJNR Am J Neuroradiol 22(5):824–830

    CAS  PubMed  Google Scholar 

  76. Bosemani T, Steinlin M, Toelle SP, Beck J, Boltshauser E, Huisman TA, Poretti A (2016) Pseudotumoral hemicerebellitis as a mimicker of Lhermitte-Duclos disease in children: does neuroimaging help to differentiate them? Childs Nerv Syst 32(5):865–871. https://doi.org/10.1007/s00381-015-2977-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of our dear colleague Dr. Andrea Poretti (1977–2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno P. Soares.

Ethics declarations

Funding

No funding was received for this study. SS is a recipient of a fellowship grant from The American Physician Fellowship for Medicine in Israel.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was not required from individual participants included in the study, since imaging exams were performed according to clinical indications.

Additional information

Key Points

• The mTOR signaling pathway functions as a controller of cell growth and homeostasis.

• Neurodevelopmental and neoplastic disorders including dysplastic megalencephaly, ganglioglioma, focal cortical dysplasia type IIb, brain lesions associated with tuberous sclerosis, and dysplastic gangliocytoma of the cerebellum result from mutations affecting the mTOR signaling pathways.

• There are common imaging findings in various disorders related to dysmorphic excessive neurons in hamartomatous CNS malformations.

• morphological-based classification of brain abnormalities is changing to a genetic/metabolic-based grouping, which improves our understanding of brain development and might allow targeted treatments to be developed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrot, S., Hwang, M., Stafstrom, C.E. et al. Dysplasia and overgrowth: magnetic resonance imaging of pediatric brain abnormalities secondary to alterations in the mechanistic target of rapamycin pathway. Neuroradiology 60, 137–150 (2018). https://doi.org/10.1007/s00234-017-1961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-017-1961-5

Keywords

Navigation