Skip to main content
Log in

Head and neck angiography at 70 kVp with a third-generation dual-source CT system in patients: comparison with 100 kVp

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

This study was conducted in order to evaluate the image quality of 70 kVp and 25 mL contrast medium (CM) volume for head and neck computed tomographic angiography (CTA) and assess the diagnostic accuracy for arterial stenosis.

Methods

Fifty patients were prospectively divided into two groups randomly: group A (n = 25), 70 kVp with 25 mL CM, and group B (n = 25), 100 kVp with 40 mL CM. CT attenuation values, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of the shoulder, neck, and cerebral arteries were measured for objective image quality. Subjective image quality of the shoulder and cerebral arteries was also evaluated. For patients undergoing digital subtracted angiography (DSA), diagnostic accuracy of CTA was assessed with DSA as reference standard.

Results

The SNRs of the shoulder, neck, and cerebral arteries in group A were higher than those in group B (P < 0.05). The CNRs of the shoulder and neck arteries in group A were higher than those in group B (P < 0.05). There was no significant difference in subjective image quality of arteries between group A and group B (P > 0.05). The accuracy was noted as 94.0% (156/166) in group A and 97.1% (134/138) in group B for ≥ 50% stenosis. The accuracy of intracranial arterial stenosis was lower than that of extracranial arterial stenosis in group A. The radiation dose of group A was significantly decreased by 56% than that of group B.

Conclusion

Head and neck CTA at 70 kVp using 25 mL CM can obtain diagnostic image quality with lower radiation dose while maintaining high accuracy in detecting the arterial stenosis compared with the 100-kVp and 40-mL CM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CM:

Contrast medium

CTA:

Computed tomographic angiography

ADMIRE:

Advanced modeled iterative reconstruction

FBP:

Filtered back projection

SNR:

Signal-to-noise ratio

CNR:

Contrast-to-noise ratio

AA:

Aortic arch

BTA:

Brachiocephalic trunk artery

SA:

Subclavian artery

CCA:

Common carotid artery

VA:

Vertebral artery

MCA:

Middle cerebral artery

BA:

Basilar artery

ED:

Effective dose

DSA:

Digital subtracted angiography

ROI:

Region of interest

MPR:

Multiplanar reformation

MIP:

Maximum intensity projections

SD:

Standard deviation

SCM:

Sternocleidomastoideus

BS:

Brain stem

ACA:

Anterior cerebral arteries

PCA:

Posterior cerebral arteries

SVC:

Superior vena cava

SV:

Subclavian vein

CTDIvol :

Volume CT dose index

DLP:

Dose-length product

ECA:

External carotid arteries

PPV:

Positive predictive value

NPV:

Negative predictive value

CCAbi:

Bifurcation of CCA

IR:

Iterative reconstruction

References

  1. Eswaradass P, Appireddy R, Evans J, Tham C, Dey S, Najm M, Menon BK (2016) Imaging in acute stroke. Expert Rev Cardiovasc Ther 14:963–975. doi:10.1080/14779072.2016.1196134

    Article  CAS  PubMed  Google Scholar 

  2. Kim JJ, Dillon WP, Glastonbury CM, Provenzale JM, Wintermark M (2010) Sixty-four-section multidetector CT angiography of carotid arteries: a systematic analysis of image quality and artifacts. AJNR Am J Neuroradiol 31:91–99. doi:10.3174/ajnr.A1768

    Article  CAS  PubMed  Google Scholar 

  3. Hsu CC, Kwan GN, Singh D, Pratap J, Watkins TW (2016) Principles and clinical application of dual-energy computed tomography in the evaluation of cerebrovascular disease. J Clin Imaging Sci 6:27. doi:10.4103/2156-7514.185003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen GZ, Zhang LJ, Schoepf UJ, Wichmann JL, Milliken CM, Zhou CS, Qi L, Luo S, Lu GM (2015) Radiation dose and image quality of 70 kVp cerebral CT angiography with optimized sinogram-affirmed iterative reconstruction: comparison with 120 kVp cerebral CT angiography. Eur Radiol 25:1453–1463. doi:10.1007/s00330-014-3533-y

    Article  PubMed  Google Scholar 

  5. Meyer M, Haubenreisser H, Schoepf UJ et al (2014) Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology 273:373–382. doi:10.1148/radiol.14140244

    Article  PubMed  Google Scholar 

  6. Cho ES, Chung TS, Ahn SJ, Chong K, Baek JH, Suh SH (2015) Cerebral computed tomography angiography using a 70 kVp protocol: improved vascular enhancement with a reduced volume of contrast medium and radiation dose. Eur Radiol 25:1421–1430. doi:10.1007/s00330-014-3540-z

    Article  PubMed  Google Scholar 

  7. Chen GZ, Fang XK, Zhou CS, Zhang LJ, Lu GM (2017) Cerebral CT angiography with iterative reconstruction at 70 kVp and 30 mL iodinated contrast agent: initial experience. Eur J Radiol 88:102–108. doi:10.1016/j.ejrad.2016.12.037

    Article  PubMed  Google Scholar 

  8. Meyer M, Haubenreisser H, Schoepf UJ, Vliegenthart R, Ong MM, Doesch C, Sudarski S, Borggrefe M, Schoenberg SO, Henzler T (2016) Radiation dose levels of retrospectively ECG-gated coronary CT angiography using 70-kVp tube voltage in patients with high or irregular heart rates. Acad Radiol. doi:10.1016/j.acra.2016.08.004

  9. Boos J, Kröpil P, Lanzman RS, Aissa J, Schleich C, Heusch P, Sawicki LM, Antoch G, Thomas C (2016) CT pulmonary angiography: simultaneous low-pitch dual-source acquisition mode with 70 kVp and 40 ml of contrast medium and comparison with high-pitch spiral dual-source acquisition with automated tube potential selection. Br J Radiol 89:20151059

    Article  PubMed  PubMed Central  Google Scholar 

  10. Higashigaito K, Schmid T, Puippe G, Morsbach F, Lachat M, Seifert B, Pfammatter T, Alkadhi H, Husarik DB (2016) CT angiography of the aorta: prospective evaluation of individualized low-volume contrast media protocols. Radiology 280:960–968. doi:10.1148/radiol.2016151982

    Article  PubMed  Google Scholar 

  11. Fang XK, Ni QQ, Schoepf UJ, Zhou CS, Chen GZ, Luo S, Fuller SR, De Cecco CN, Zhang LJ, Lu GM (2016) Image quality, radiation dose and diagnostic accuracy of 70 kVp whole brain volumetric CT perfusion imaging: a preliminary study. Eur Radiol 26:4184–4193. doi:10.1007/s00330-016-4225-6

    Article  PubMed  Google Scholar 

  12. Gawlitza J, Haubenreisser H, Meyer M, Hagelstein C, Sudarski S, Schoenberg SO, Henzler T (2016) Comparison of organ-specific-radiation dose levels between 70 kVp perfusion CT and standard tri-phasic liver CT in patients with hepatocellular carcinoma using a Monte-Carlo-simulation-based analysis platform. Eur J Radiol Open 3:95–99. doi:10.1016/j.ejro.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sabel BO, Buric K, Karara N, Thierfelder KM, Dinkel J, Sommer WH, Meinel FG (2016) High-pitch CT pulmonary angiography in third generation dual-source CT: image quality in an unselected patient population. PLoS One 11:e0146949. doi:10.1371/journal.pone.0146949

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mohan S, Agarwal M, Pukenas B (2016) Computed tomography angiography of the neurovascular circulation. Radiol Clin N Am 54:147–162. doi:10.1016/j.rcl.2015.09.001

    Article  PubMed  Google Scholar 

  15. Chen Y, Xue H, Jin ZY et al (2013) 128-Slice acceletated-pitch dual energy CT angiography of the head and neck: comparison of different low contrast medium volumes. PLoS One 8:e80939. doi:10.1371/journal.pone.0080939

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barnett HJ, Taylor DW, Eliasziw M et al (1998) Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 339:1415–1425. doi:10.1056/NEJM199811123392002

    Article  CAS  PubMed  Google Scholar 

  17. Huang J, Degnan AJ, Liu Q, Teng Z, Yue CS, Gillard JH, Lu JP (2012) Comparison of NASCET and WASID criteria for the measurement of intracranial stenosis using digital subtraction and computed tomography angiography of the middle cerebral artery. J Neuroradiol 39:342–345. doi:10.1016/j.neurad.2011.11.005

    Article  PubMed  Google Scholar 

  18. May MS, Kramer MR, Eller A, Wuest W, Scharf M, Brand M, Saake M, Schmidt B, Uder M, Lell MM (2014) Automated tube voltage adaptation in head and neck computed tomography between 120 and 100 kV: effects on image quality and radiation dose. Neuroradiology 56:797–803. doi:10.1007/s00234-014-1393-4

    Article  PubMed  Google Scholar 

  19. Scholtz JE, Wichmann JL, Hüsers K, Albrecht MH, Beeres M, Bauer RW, Vogl TJ, Bodelle B (2016) Third-generation dual-source CT of the neck using automated tube voltage adaptation in combination with advanced modeled iterative reconstruction: evaluation of image quality and radiation dose. Eur Radiol 26:2623–2631. doi:10.1007/s00330-015-4099-z

    Article  PubMed  Google Scholar 

  20. Luo S, Zhang LJ, Meinel FG, Zhou CS, Qi L, McQuiston AD, Schoepf UJ, Lu GM (2014) Low tube voltage and low contrast material volume cerebral CT angiography. Eur Radiol 24:1677–1685. doi:10.1007/s00330-014-3184-z

    Article  PubMed  Google Scholar 

  21. Scholtz JE, Kaup M, Hüsers K et al (2016) Advanced modeled iterative reconstruction in low-tube-voltage contrast-enhanced neck CT: evaluation of objective and subjective image quality. AJNR Am J Neuroradiol 37:143–150. doi:10.3174/ajnr.A4502

    Article  PubMed  Google Scholar 

  22. Saade C, El-Merhi F, El-Achkar B, Kerek R, Vogl TJ, Maroun GG, Jamjoom L, Al-Mohiy H, Naffaa L (2016) 256 Slice multi-detector computed tomography thoracic aorta computed tomography angiography: improved luminal opacification using a patient-specific contrast protocol and caudocranial scan acquisition. J Comput Assist Tomogr 40:964–970. doi:10.1097/RCT.0000000000000456

    Article  PubMed  Google Scholar 

  23. Saade C, Bourne R, Wilkinson M, Evanoff M, Brennan PC (2013) Caudocranial scan direction and patient-specific injection protocols optimize ECG-gated and non-gated thoracic CTA. J Comput Assist Tomogr 37:725–731. doi:10.1097/RCT.0b013e31829e02b9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyu Jin.

Ethics declarations

Funding

No funding was received for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, X., Xue, H. et al. Head and neck angiography at 70 kVp with a third-generation dual-source CT system in patients: comparison with 100 kVp. Neuroradiology 59, 1071–1081 (2017). https://doi.org/10.1007/s00234-017-1901-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-017-1901-4

Keywords

Navigation