Skip to main content

Advertisement

Log in

Alterations in white matter volume and its correlation with clinical characteristics in patients with generalized anxiety disorder

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Only a few morphological studies have focused on changes in white matter (WM) volume in patients with generalized anxiety disorder (GAD). We evaluated alterations in WM volume and its correlation with symptom severity and duration of illness in adults with GAD.

Methods

The 44 subjects were comprised of 22 patients with GAD (13 males and nine females) diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) and 22 age-matched healthy controls (13 males and nine females). High-resolution magnetic resonance imaging (MRI) data were processed by voxel-based morphometry (VBM) analysis based on diffeomorphic anatomical registration using the exponentiated Lie algebra (DARTEL) algorithm in SPM8.

Results

Patients with GAD showed significantly reduced WM volume, particularly in the dorsolateral prefrontal cortex (DLPFC), anterior limb of the internal capsule (ALIC), and midbrain. In addition, DLPFC volume was negatively correlated with GAD-7 score and illness duration. ALIC volume was negatively correlated with GAD-7 score. Female patients had significantly less orbitofrontal cortex volume compared to that in male patients.

Conclusion

The findings demonstrate localized changes in WM volume associated with cognitive and emotional dysfunction in patients with GAD. The finding will be helpful for understanding the neuropathology in patients with GAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders (4th ed., text revision). American Psychiatric Association, Washington, DC

    Google Scholar 

  2. Roemer L, Lee JK, Salters-Pedneault K et al (2009) Mindfulness and emotion regulation difficulties in generalized anxiety disorder: preliminary evidence for independent and overlapping contributions. Behav Ther 40:142–154

    Article  PubMed Central  PubMed  Google Scholar 

  3. Mantella RC, Butters MA, Dew MA et al (2007) Cognitive impairment in late-life generalized anxiety disorder. Am J Geriatr Psych 15:673–679

    Article  Google Scholar 

  4. Bernal M, Haro JM, Bernert S et al (2007) Risk factors for suicidality in Europe: results from the ESEMED study. J Affect Disord 101:27–34

    Article  CAS  PubMed  Google Scholar 

  5. Rickels K, Rynn M, Khalid-Khan S (2002) Diagnosis and evaluation of generalized anxiety disorder patients. In: Nutt D, Rickels K, Stein DJ (eds) Generalized anxiety disorder: symptomatology, pathogenesis and management. Martin Dunitz, London, pp 27–40

    Google Scholar 

  6. Monk CS, Telzer EH, Mogg K et al (2008) Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch Gen Psychiatry 65:568–576

    Article  PubMed Central  PubMed  Google Scholar 

  7. Price RB, Eldreth DA, Mohlman J (2011) Deficient prefrontal attentional control in late-life generalized anxiety disorder: an fMRI investigation. Transl Psychiatry 1:e46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ball TM, Ramsawh HJ, Campbell-Sills L et al (2013) Prefrontal dysfunction during emotion regulation in generalized anxiety and panic disorders. Psychol Med 43:1475–1486

    Article  PubMed  Google Scholar 

  9. Moon CM, Kim GW, Jeong GW (2014) Whole-brain gray matter volume abnormalities in patients with generalized anxiety disorder: voxel-based morphometry. Neuroreport 25:184–189

    Article  CAS  PubMed  Google Scholar 

  10. Liao M, Yang F, Zhang Y et al (2014) Lack of gender effects on gray matter volumes in adolescent generalized anxiety disorder. J Affect Disord 155:278–282

    Article  PubMed  Google Scholar 

  11. Schienle A, Ebner F, Schäfer A (2011) Localized gray matter volume abnormalities in generalized anxiety disorder. Eur Arch Psychiatry Clin Neurosci 261:303–307

    Article  PubMed  Google Scholar 

  12. Strawn JR, Wehry AM, Chu WJ et al (2013) Neuroanatomic abnormalities in adolescents with generalized anxiety disorder: a voxel-based morphometry study. Depress Anxiety 30:842–848

    Article  PubMed  Google Scholar 

  13. De Bellis MD, Keshavan MS, Shifflett H et al (2002) Superior temporal gyrus volumes in pediatric generalized anxiety disorder. Biol Psychiatry 51:553–562

    Article  PubMed  Google Scholar 

  14. Liao M, Yang F, Zhang Y et al (2014) White matter abnormalities in adolescents with generalized anxiety disorder: a diffusion tensor imaging study. BMC Psychiatry 14:41

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zhang Y, Li L, Yu R et al (2013) White matter integrity alterations in first episode, treatment-naive generalized anxiety disorder. J Affect Disord 148:196–201

    Article  PubMed  Google Scholar 

  16. Fan Q, Yan X, Wang J et al (2012) Abnormalities of white matter microstructure in unmedicated obsessive-compulsive disorder and changes after medication. PLoS One 7:e35889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Di X, Chan RC, Gong QY (2009) White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: an activation likelihood estimation meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 33(8):1390–1394

    Article  PubMed  Google Scholar 

  18. Duan Y, Liu Y, Liang P et al (2013) White matter atrophy in brain of neuromyelitis optica: a voxel-based morphometry study. Acta Radiol 55(5):589–593

    Article  PubMed  Google Scholar 

  19. Kessler RC, McGonagle KA, Zhao S et al (1994) Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 51:8–19

    Article  CAS  PubMed  Google Scholar 

  20. Bahrami F, Yousefi N (2011) Females are more anxious than males: a metacognitive perspective. Iran J Psychiatry Behav Sci 5:83–90

    PubMed Central  PubMed  Google Scholar 

  21. First MB, Spitzer RL, Gibbon M et al (1995) Structured clinical interview for DSM-IV axis I disorders. Patient Edition (SCIDP), Version 2. Biometrics Research, New York, New York State Psychiatric Institute

  22. Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32:50–55

    Article  CAS  PubMed  Google Scholar 

  23. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiat 23:56–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Spitzer RL, Kroenke K, Williams JB et al (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 166:1092–1097

    Article  PubMed  Google Scholar 

  25. Spielberger CD, Gorsuch RL, Lushene RE (1970) Test manual for the State Trait Anxiety Inventory. Consulting Consulting Psychologists Press, Palo Alto, California

  26. Taylor S, Cox BJ (1998) An expanded anxiety sensitivity index: evidence for a hierarchic structure in a clinical sample. J Anxiety Dis 12:463–484

    Article  CAS  Google Scholar 

  27. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  PubMed  Google Scholar 

  28. Bookstein FL (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14:1454–1462

    Article  CAS  PubMed  Google Scholar 

  29. Rando K, Tuit K, Hannestad J et al (2013) Sex differences in decreased limbic and cortical grey matter volume in cocaine dependence: a voxel-based morphometric study. Addict Biol 18:147–160

    Article  PubMed Central  PubMed  Google Scholar 

  30. Luders E, Gaser C, Narr KL et al (2009) Why sex matters: brain size independent differences in gray matter distributions between men and women. J Neurosci 29:14265–14270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lancaster JL, Woldorff MG, Parsons LM et al (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131

    Article  CAS  PubMed  Google Scholar 

  32. Ke X, Tang T, Hong S et al (2009) White matter impairments in autism, evidence from voxel-based morphometry and diffusion tensor imaging. Brain Res 1265:171–177

    Article  CAS  PubMed  Google Scholar 

  33. Seok JH, Park HJ, Chun JW et al (2007) White matter abnormalities associated with auditory hallucinations in schizophrenia: a combined study of voxel-based analyses of diffusion tensor imaging and structural magnetic resonance imaging. Psychiatry Res 156:93–104

    Article  PubMed  Google Scholar 

  34. Velakoulis D, Wood SJ, Wong MT et al (2006) Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 63:139–149

    Article  PubMed  Google Scholar 

  35. Moon CM, Kang HK, Jeong GW (2015) Metabolic change in the right dorsolateral prefrontal cortex and its correlation with symptom severity in patients with generalized anxiety disorder: Proton magnetic resonance spectroscopy at 3 Tesla. Psychiatry Clin Neurosci, in press

  36. Moon CM, Jeong GW (2015) Functional neuroanatomy on the working memory under emotional distraction in patients with generalized anxiety disorder. Psychiatry Clin Neurosci, in press

  37. Shizukuishi T, Abe O, Aoki S (2013) Diffusion tensor imaging analysis for psychiatric disorders. Magn Reson Med Sci 12:153–159

    Article  PubMed  Google Scholar 

  38. Yang Q, Huang X, Hong N et al (2007) White matter microstructural abnormalities in late-life depression. Int Psychogeriatr 19:757–766

    Article  PubMed  Google Scholar 

  39. Oh JS, Kubicki M, Rosenberger G et al (2009) Thalamo-frontal white matter alterations in chronic schizophrenia: a quantitative diffusion tractography study. Hum Brain Mapp 30:3812–3825

    Article  PubMed Central  PubMed  Google Scholar 

  40. Norgren R (1976) Taste pathways to hypothalamus and amygdala. J Comp Neurol 166:17–30

    Article  CAS  PubMed  Google Scholar 

  41. Okun MS, Mann G, Foote KD et al (2007) Deep brain stimulation in the internal capsule and nucleus accumbens region: responses observed during active and sham programming. J Neurol Neurosurg Psychiatry 78:310–314

    Article  PubMed Central  PubMed  Google Scholar 

  42. Barnden LR, Crouch B, Kwiatek R et al (2011) A brain MRI study of chronic fatigue syndrome: evidence of brainstem dysfunction and altered homeostasis. NMR Biomed 24:1302–1312

    Article  PubMed Central  PubMed  Google Scholar 

  43. Cotter DR, Pariante CM, Everall IP (2001) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55:585–595

    Article  CAS  PubMed  Google Scholar 

  44. Neuropsychopharmacology: The fifth generation of progress (2002) Edited by Davis KL, Charney D, Coyle JT, Nemeroff C. Williams and Wilkins, Philadelphia

  45. Coyle JT, Schwarcz R (2000) Mind glue: implications of glial cell biology for psychiatry. Arch Gen Psychiatry 57:90–93

    Article  CAS  PubMed  Google Scholar 

  46. Ongür D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95:13290–13295

    Article  PubMed Central  PubMed  Google Scholar 

  47. Daubert EA, Condron BG (2010) Serotonin: a regulator of neuronal morphology and circuitry. Trends Neurosci 33:424–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Maron E, Kuikka JT, Ulst K et al (2004) SPECT imaging of serotonin transporter binding in patients with generalized anxiety disorder. Eur Arch Psychiatry Clin Neurosci 254:392–396

    Article  PubMed  Google Scholar 

  49. Konishi J, Asami T, Hayano F et al (2014) Multiple white matter volume reductions in patients with panic disorder: relationships between orbitofrontal gyrus volume and symptom severity and social dysfunction. PLoS One 9:e92862

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NRF of Korea (2013R1A1A2013878) and Chonnam National University Hospital Biomedical Research Institute (CRI 15011-1).

Ethical standards and patient consent

We declare that all human tests have been approved by the Ethics Committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwang-Woo Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, CM., Jeong, GW. Alterations in white matter volume and its correlation with clinical characteristics in patients with generalized anxiety disorder. Neuroradiology 57, 1127–1134 (2015). https://doi.org/10.1007/s00234-015-1572-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-015-1572-y

Keywords

Navigation