Skip to main content
Log in

MRI characterization of temporal lobe epilepsy using rapidly measurable spatial indices with hemisphere asymmetries and gender features

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

An Erratum to this article was published on 19 July 2015

Abstract

Introduction

The paucity of morphometric markers for hemispheric asymmetries and gender variations in hippocampi and amygdalae in temporal lobe epilepsy (TLE) calls for better characterization of TLE by finding more useful prognostic MRI parameter(s).

Methods

T1-weighted MRI (3 T) morphometry using multiple parameters of hippocampus-parahippocampus (angular and linear measures, volumetry) and amygdalae (volumetry) including their hemispheric asymmetry indices (AI) were evaluated in both genders. The cutoff values of parameters were statistically estimated from measurements of healthy subjects to characterize TLE (57 patients, 55 % male) alterations.

Results

TLE had differential categories with hippocampal atrophy, parahippocampal angle (PHA) acuteness, and several other parametric changes. Bilateral TLE categories were much more prevalent compared to unilateral TLE categories. Female patients were considerably more disposed to bilateral TLE categories than male patients. Male patients displayed diverse categories of unilateral abnormalities. Few patients (both genders) had combined bilateral appearances of hippocampal atrophy, amygdala atrophy, PHA acuteness, and increase in hippocampal angle (HA) where medial distance ratio (MDR) varied among genders. TLE had gender-specific and hemispheric dominant alterations in AI of parameters. Maximum magnitude of parametric changes in TLE includes (a) AI increase in HA of both genders, (b) HA increase (bilateral) in female patients, and (c) increase in ratio of amygdale/hippocampal volume (unilateral, right hemispheric), and AI decrease in MDR, in male patients.

Conclusion

Multiparametric MRI studies of hippocampus and amygdalae, including their hemispheric asymmetry, underscore better characterization of TLE. Rapidly measurable single-slice parameters (HA, PHA, MDR) can readily delineate TLE in a time-constrained clinical setting, which contrasts with customary three-dimensional hippocampal volumetry that requires many slice computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blair RD (2012) Temporal lobe epilepsy semiology. Epilepsy Res Treat 2012:751510. doi:10.1155/2012/751510

    PubMed Central  PubMed  Google Scholar 

  2. Javidan M (2012) Electroencephalography in mesial temporal lobe epilepsy: a review. Epilepsy Res Treat 2012:637430. doi:10.1155/2012/637430

    PubMed Central  PubMed  Google Scholar 

  3. Kennedy JD, Schuele SU (2012) Neocortical temporal lobe epilepsy. J Clin Neurophysiol 29:366–370. doi:10.1097/WNP.0b013e31826bd78b

    Article  PubMed  Google Scholar 

  4. Mani J (2014) Video electroencephalogram telemetry in temporal lobe epilepsy. Ann Indian Acad Neurol 17:S45–S49. doi:10.4103/0972-2327.128653

    Article  PubMed Central  PubMed  Google Scholar 

  5. Salami P, Lévesque M, Gotman J et al (2015) Distinct EEG seizure patterns reflect different seizure generation mechanisms. J Neurophysiol. doi:10.1152/jn.00031.2015

    PubMed  Google Scholar 

  6. Georgiadis I, Kapsalaki EZ, Fountas KN (2013) Temporal lobe resective surgery for medically intractable epilepsy: a review of complications and side effects. Epilepsy Res Treat 2013:752195. doi:10.1155/2013/752195

    PubMed Central  PubMed  Google Scholar 

  7. Bonilha L, Keller SS (2015) Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes. Quant Imaging Med Surg 5:204–224. doi:10.3978/j.issn.2223-4292.2015.01.01

    PubMed Central  PubMed  Google Scholar 

  8. Lee HW, Youngblood MW, Farooque P et al (2013) Seizure localization using three-dimensional surface projections of intracranial EEG power. Neuroimage 83:616–626. doi:10.1016/j.neuroimage.2013.07.010

    Article  PubMed  Google Scholar 

  9. Yang PF, Zhang HJ, Pei JS et al (2014) Intracranial electroencephalography with subdural and/or depth electrodes in children with epilepsy: techniques, complications, and outcomes. Epilepsy Res 108:1662–1670. doi:10.1016/j.eplepsyres.2014.08.011

    Article  PubMed  Google Scholar 

  10. Subramaniyam NP, Hyttinen J et al (2015) Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks. Phys Rev E Stat Nonlinear Soft Matter Phys 91:022927

    Article  Google Scholar 

  11. Nowell M, Rodionov R, Zombori G et al (2015) Utility of 3D multimodality imaging in the implantation of intracranial electrodes in epilepsy. Epilepsia 56:403–413. doi:10.1111/epi.12924

    Article  PubMed  Google Scholar 

  12. Bernhardt BC, Hong S, Bernasconi A et al (2013) Imaging structural and functional brain networks in temporal lobe epilepsy. Front Hum Neurosci 7:624. doi:10.3389/fnhum.2013.00624

    Article  PubMed Central  PubMed  Google Scholar 

  13. Maccotta L, He BJ, Snyder AZ et al (2013) Impaired and facilitated functional networks in temporal lobe epilepsy. Neuroimage Clin 2:862–872. doi:10.1016/j.nicl. 2013.06.011

    Article  PubMed Central  PubMed  Google Scholar 

  14. Douw L, DeSalvo MN, Tanaka N et al (2015) Dissociated multimodal hubs and seizures in temporal lobe epilepsy. Ann Clin Transl Neurol. doi:10.1002/acn3.173

    PubMed Central  PubMed  Google Scholar 

  15. Doelken MT, Richter G, Stefan H et al (2007) Multimodal coregistration in patients with temporal lobe epilepsy—results of different imaging modalities in lateralization of the affected hemisphere in MR imaging positive and negative subgroups. AJNR Am J Neuroradiol 28:449–454

    CAS  PubMed  Google Scholar 

  16. Jung DE, Lee JS (2010) Multimodal neuroimaging in presurgical evaluation of childhood epilepsy. Korean J Pediatr 53:779–785. doi:10.3345/kjp.2010.53.8.779

    Article  PubMed Central  Google Scholar 

  17. De Ciantis A, Lemieux L (2013) Localisation of epileptic foci using novel imaging modalities. Curr Opin Neurol 26:368–373. doi:10.1097/WCO.0b013e328363372c

    Article  PubMed Central  PubMed  Google Scholar 

  18. Olson LD, Perry MS (2013) Localization of epileptic foci using multimodality neuroimaging. Int J Neural Syst 23:1230001. doi:10.1142/S012906571230001X

    Article  PubMed  Google Scholar 

  19. Kerr WT, Nguyen ST, Cho AY et al (2013) Computer-aided diagnosis and localization of lateralized temporal lobe epilepsy using interictal FDG-PET. Front Neurol 4:31. doi:10.3389/fneur.2013.00031

    Article  PubMed Central  PubMed  Google Scholar 

  20. Nazem-Zadeh MR, Elisevich KV, Schwalb JM et al (2014) Lateralization of temporal lobe epilepsy by multimodal multinomial hippocampal response-driven models. J Neurol Sci 347:107–118. doi:10.1016/j.jns.2014.09.029

    Article  PubMed  Google Scholar 

  21. Caraballo R, Fejerman N (2015) Management of epilepsy in resource-limited settings. Epileptic Disord 17:13–18. doi:10.1684/epd.2014.0721

    PubMed  Google Scholar 

  22. Huang H, Zhou H, Wang N (2015) Recent advances in epilepsy management. Cell Biochem Biophys. doi:10.1007/s12013-015-0603-y

    PubMed Central  Google Scholar 

  23. Banerjee TK, Dutta S, Ray BK et al (2015) Epidemiology of epilepsy and its burden in Kolkata, India. Acta Neurol Scand. doi:10.1111/ane.12384

    PubMed  Google Scholar 

  24. Kim H, Bernhardt BC, Kulaga-Yoskovitz J et al (2014) Multivariate hippocampal subfield analysis of local MRI intensity and volume: application to temporal lobe epilepsy. Med Image Comput Comput Assist Interv 17(Pt 2):170–178

    PubMed  Google Scholar 

  25. García-Fiñana M, Denby CE, Keller SS et al (2006) Degree of hippocampal atrophy is related to side of seizure onset in temporal lobe epilepsy. AJNR Am J Neuroradiol 27:1046–1052

    PubMed  Google Scholar 

  26. Finegersh A, Avedissian C, Shamim S et al (2011) Bilateral hippocampal atrophy in temporal lobe epilepsy: effect of depressive symptoms and febrile seizures. Epilepsia 52:689–697. doi:10.1111/j.1528-1167.2010.02928.x

    Article  PubMed Central  PubMed  Google Scholar 

  27. Coan AC, Kubota B, Bergo FP et al (2014) 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis. AJNR Am J Neuroradiol 35:77–83. doi:10.3174/ajnr.A3640

    Article  CAS  PubMed  Google Scholar 

  28. Lee YJ, Lee JS (2013) Temporal lobe epilepsy surgery in children versus adults: from etiologies to outcomes. Korean J Pediatr 56:275–281. doi:10.3345/kjp.2013.56.7.275

    Article  PubMed Central  PubMed  Google Scholar 

  29. Doherty MJ, Jayadev S, Miller JW (2003) Age at focal epilepsy onset varies by sex and hemispheric lateralization. Neurology 60:1473–1477

    Article  CAS  PubMed  Google Scholar 

  30. Janszky J, Schulz R, Janszky I et al (2004) Medial temporal lobe epilepsy: gender differences. J Neurol Neurosurg Psychiatry 75:773–775. doi:10.1136/jnnp.2003.020941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Herzog AG (2008) Catamenial epilepsy: definition, prevalence pathophysiology and treatment. Seizure 17:151–159. doi:10.1016/j.seizure.2007.11.014

    Article  PubMed  Google Scholar 

  32. Caboclo LOSF, Garzon E, Miyashira FS et al (2005) Temporal lobe epilepsy with unilateral hippocampal sclerosis and contralateral temporal scalp seizure onset: report of four patients with “burned-out hippocampus”. J Epilepsy Clin Neurophysiol 11:79–86. doi:10.1590/S1676-26492005000200003

    Article  Google Scholar 

  33. Henry TR, Chupin M, Lehéricy S et al (2011) Hippocampal sclerosis in temporal lobe epilepsy: findings at 7T1. Radiology 261:199–209. doi:10.1148/radiol.11101651

    Article  PubMed Central  PubMed  Google Scholar 

  34. Hogan RE, Bucholz RD, Joshi S (2003) Hippocampal deformation-based shape analysis in epilepsy and unilateral mesial temporal sclerosis. Epilepsia 4:800–806

    Article  Google Scholar 

  35. Kim H, Mansi T, Bernasconi N (2013) Disentangling hippocampal shape anomalies in epilepsy. Front Neurol 4:131. doi:10.3389/fneur.2013.00131

    Article  PubMed Central  PubMed  Google Scholar 

  36. Sawrie SM, Martin RC, Gilliam F et al (2001) Verbal retention lateralizes patients with unilateral temporal lobe epilepsy and bilateral hippocampal atrophy. Epilepsia 42:651–659

    Article  CAS  PubMed  Google Scholar 

  37. Koepp MJ, Labbé C, Richardson MP et al (1997) Regional hippocampal [11C]flumazenil PET in temporal lobe epilepsy with unilateral and bilateral hippocampal sclerosis. Brain 120:1865–1876

    Article  PubMed  Google Scholar 

  38. Greener M (2013) Beyond seizures: understanding cognitive deficits in epilepsy. Prog Neurol Psychiatry 17:31–32. doi:10.1002/pnp.285

    Article  Google Scholar 

  39. Mijo S, Grabova S, Vyshka G et al (2013) Bitemporal lobe epilepsy versus unitemporal lobe epilepsy. Neurology 4:WMC004476

    Google Scholar 

  40. Jutila L, Immonen A, Mervaala E et al (2002) Long term outcome of temporal lobe epilepsy surgery: analyses of 140 consecutive patients. J Neurol Neurosurg Psychiatry 73:486–494. doi:10.1136/jnnp.73.5.486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kilpatrick C, Cook M, Matkovic Z et al (2006) Seizure frequency and duration of epilepsy are not risk factors for postoperative seizure outcome in patients with hippocampal sclerosis. Epilepsia 40:899–903. doi:10.1111/j.1528-1157.1999. tb00796

    Article  Google Scholar 

  42. Kagawa K, Iida K, Katagiri M et al (2012) Successful treatment of mesial temporal lobe epilepsy with bilateral hippocampal atrophy and false temporal scalp ictal onset: a case report. Hiroshima J Med Sci 61:37–41

    PubMed  Google Scholar 

  43. Téllez-Zenteno JF, Dhar R, Hernandez-Ronquillo L et al (2007) Long-term outcomes in epilepsy surgery: antiepileptic drugs, mortality, cognitive and psychosocial aspects. Brain 130:334–345

    Article  PubMed  Google Scholar 

  44. Ho SS, Consalvo D, Gilliam F et al (1998) Amygdala atrophy and seizure outcome after temporal lobe epilepsy surgery. Neurology 5:1502–1504

    Article  Google Scholar 

  45. Coan AC, Morita ME, Machado-de-Campos B et al (2013) Amygdala enlargement in patients with mesial temporal lobe epilepsy without hippocampal sclerosis. Front Neurol 4:166. doi:10.3389/fneur.2013.00166, eCollection 2013

    Article  PubMed Central  PubMed  Google Scholar 

  46. Bower SPC, Vogrin SJ, Morris K et al (2003) Amygdala volumetry in “imaging-negative” temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 74:1245–1249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Bernasconi N, Kinay D, Andermann F et al (2005) Analysis of shape and positioning of the hippocampal formation: an MRI study in patients with partial epilepsy and healthy controls. Brain 128:2442–2452

    Article  CAS  PubMed  Google Scholar 

  48. Shamim S, Hasler G, Liew C et al (2009) Temporal lobe epilepsy, depression, and hippocampal volume. Epilepsia 50:1067–1071. doi:10.1111/j.1528-1167.2008.01883.x

    Article  PubMed Central  PubMed  Google Scholar 

  49. Woolard AA, Heckers S (2012) Anatomical and functional correlates of human hippocampal volume asymmetry. Psychiatry Res 201:48–53. doi:10.1016/j. pscychresns.2011.07.016

    Article  PubMed Central  PubMed  Google Scholar 

  50. Hayashi T, Wada A, Uchida N et al (2009) Enlargement of the hippocampal angle: a new index of Alzheimer disease. Magn Reson Med Sci 8:33–38

    Article  PubMed  Google Scholar 

  51. Maltbie E, Bhatt K, Paniagua B et al (2012) Asymmetric bias in user guided segmentations of brain structures. Neuroimage 59:1315–1323. doi:10.1016/j. neuroimage.2011.08.025

    Article  PubMed Central  PubMed  Google Scholar 

  52. Rogers BP, Sheffield JM, Luksik AS et al (2012) Systematic error in hippocampal volume asymmetry measurement is minimal with a manual segmentation protocol. Front Neurosci 13:179. doi:10.3389/fnins.2012.00179

    Google Scholar 

  53. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  CAS  PubMed  Google Scholar 

  54. Smith CAB (1957) On the estimation of intra-class correlation. Ann Hum Genet 21:363–373. doi:10.1111/j.1469-1809.1972.tb00291

    Article  CAS  PubMed  Google Scholar 

  55. Wolak ME, Fairbairn DJ, Paulsen YR (2012) Guidelines for estimating repeatability. Methods Ecol Evol 3:129–137. doi:10.1111/j.2041-210X.2011.00125

    Article  Google Scholar 

  56. Jiang L, Kim M, Chodkowski B et al (2010) Reliability and reproducibility of perfusion MRI in cognitively normal subjects. Magn Reson Imaging 28:1283–1289. doi:10.1016/j.mri.2010.05.002

    Article  PubMed Central  PubMed  Google Scholar 

  57. Guo CC, Kurth F, Zhou J et al (2012) One-year test–retest reliability of intrinsic connectivity network fMRI in older adults. Neuroimage 61:1471–1483. doi:10.1016/j.neuroimage.2012.03.027

    Article  PubMed Central  PubMed  Google Scholar 

  58. Telesford QK, Burdette JH, Laurienti PJ (2013) An exploration of graph metric reproducibility in complex brain networks. Front Neurosci 7:67. doi:10.3389/fnins. 2013.00067

    Article  PubMed Central  PubMed  Google Scholar 

  59. Haario H, Laine M, Mira A et al (2006) DRAM: efficient adaptive MCMC. Stat Comput 16:339–354

    Article  Google Scholar 

  60. Laine M (2008) Adaptive MCMC methods with applications in environmental and models. Finnish Meteorological Institute Contributions 69 ISBN 978-951-697-662-7

  61. Soetaert K, Petzoldt T (2010) Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME. J Stat Softw 33:1–28

    Google Scholar 

  62. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  63. Obenaus A, Yong-Hing CJ, Tong KA et al (2001) A reliable method for measurement and normalization of pediatric hippocampal volumes. Pediatr Res 50:124–132

    Article  CAS  PubMed  Google Scholar 

  64. Hasboun D, Chantome M, Zouaoui A et al (1996) MR determination of hippocampal volume: comparison of three methods. AJNR Am J Neuroradiol 17:1091–1098

    CAS  PubMed  Google Scholar 

  65. Jeukens CR, Vlooswijk MC, Majoie HJ et al (2009) Hippocampal MRI volumetry at 3 Tesla: reliability and practical guidance. Invest Radiol 44:509–517. doi:10.1097/RLI.0b013e3181b4c180

    Article  PubMed  Google Scholar 

  66. Obuchowski NA, Reeves AP, Huang EP et al (2015) Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons. Stat Methods Med Res 24:68–106. doi:10.1177/0962280214537390

    Article  PubMed  Google Scholar 

  67. Risholm P, Janoos F, Norton I et al (2013) Bayesian characterization of uncertainty in intra-subject non-rigid registration. Med Image Anal 17:538–555. doi:10.1016/j.media.2013.03.002

    Article  PubMed Central  PubMed  Google Scholar 

  68. Schmidt P, Schmid VJ, Gaser C et al (2013) Fully Bayesian inference for structural MRI: application to segmentation and statistical analysis of T2-hypointensities. PLoS One 8:e68196. doi:10.1371/journal.pone.0068196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Lee KJ, Jones GL, Caffo BS et al (2014) Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data. Bayesian Anal 9:699–732. doi:10.1214/14-BA873

    Article  PubMed Central  PubMed  Google Scholar 

  70. Walter SD, Eliasziw M, Donner A (1998) Sample size and optimal designs for reliability studies. Stat Med 17:101–110

    Article  CAS  PubMed  Google Scholar 

  71. Shieh G (2014) Optimal sample sizes for the design of reliability studies: power consideration. Behav Res Methods 46:772–785. doi:10.3758/s13428-013-0396-0

    Article  PubMed  Google Scholar 

  72. Yuan Y, MacKinnon DP (2009) Bayesian mediation analysis. Psychol Methods 14:301–322. doi:10.1037/a0016972

    Article  PubMed Central  PubMed  Google Scholar 

  73. VanMourik S, Ter Braak C, Stigter H et al (2014) Prediction uncertainty assessment of a systems biology model requires a sample of the full probability distribution of its parameters. PeerJ 2:e433. doi:10.7717/peerj.433

    Article  Google Scholar 

  74. Nuijten MB, Wetzels R, Matzke D et al (2015) A default Bayesian hypothesis test for mediation. Behav Res Methods 47:85–97. doi:10.3758/s13428-014-0470-2

    Article  PubMed  Google Scholar 

  75. Fotuhi M, Do D, Jack C (2012) Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol 8:189–202. doi:10.1038/nrneurol.2012.27

    CAS  PubMed  Google Scholar 

  76. Gerritsen L, Rijpkema M, van Oostrom I et al (2012) Amygdala to Hippocampal volume ratio is associated with negative memory bias in healthy subjects. Psychol Med 42:335–343. doi:10.1017/S003329171100122X

    Article  CAS  PubMed  Google Scholar 

  77. Nazem-Zadeh MR, Schwalb JM, Elisevich KV et al (2014) Lateralization of temporal lobe epilepsy using a novel uncertainty analysis of MR diffusion in hippocampus, cingulum, and fornix, and Hippocampal volume and FLAIR intensity. J Neurol Sci 342:152–161. doi:10.1016/j.jns.2014.05.019

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are specifically thankful to Prof. Pradip Kumar Mitra, Director, Institute of Postgraduate Medical Education and Research (IPGME&R), SSKM Hospital under State Govt. of West Bengal, Kolkata, India; Prof. Subrata Sinha, Director, National Brain Research Centre (NBRC) under Govt. of India; and Dr. Samiran Samanta, Radiologist, IPGME&R, for providing necessary cooperation. We are grateful to Prof. Alan Evans and Mr. Samir Das (Montreal Neurological Institute, Canada) for their facilitation in the inter-institutional imaging grid infrastructure. We are grateful to Prof. Suranjan Das (Vice-Chancellor), Prof. Dhrubajyoti Chattopadhyay (Pro Vice-Chancellor, Academy), and Prof. Pritha Mukhopadhyay (Coordinator, UGC-CPEPA scheme) of the University of Calcutta, Kolkata, India, for their kind cooperation to execute the study under UGC-CPEPA scheme (Govt. of India).

The MRI acquisition of healthy subjects was funded by the grants [BI 92(7)] of the University of Calcutta and supported by University Grant Commission (UGC, Govt. of India) under the Centre with Potential for Excellence in Particular Area (CPEPA) scheme (F. No. 8-2/2008 (NS/PE), dt 14/12/2011), granted to the University of Calcutta.

Appreciation is extended to Office of Principal Scientific Officer, Government of India, for sponsoring the India Brain Grid initiative, which enabled the collaboration of this study. Sai Krishna Mulpuru is supported by Ministry of Information Technology, Govt. of India. Support for the logistics of the work of Prasun Kumar Roy is from Tata Innovation Program, Dept. of Biotechnology, Govt. of India.

Ethical standards and patient consent

We declare that all human and animal studies have been approved by the Institutional Human Ethics Committee at IPGME&R, SSKM Hospital (Memo No. Inst/IEC/552, dated 16.01.2014), under State Govt. of West Bengal, Kolkata, India, and the Department of Physiology (Reference No. IHEC/PHY/CU/H-P 28/13 dated 05.04.2013), University of Calcutta, Kolkata, India, and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilkanta Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Sarkar, S., Chakraborty, S. et al. MRI characterization of temporal lobe epilepsy using rapidly measurable spatial indices with hemisphere asymmetries and gender features. Neuroradiology 57, 873–886 (2015). https://doi.org/10.1007/s00234-015-1540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-015-1540-6

Keywords

Navigation