Skip to main content
Log in

Force recurrence of semigroup actions

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We investigate the sets of countable discrete semigroups that force recurrence, that is, the recurrent properties of a point along a subset of a countable semigroup action. We show that a subset of a monoid forces recurrence (resp., forces minimality) if and only if it contains a broken IP-set (resp., broken syndetic set), and forces infinite recurrence implies it is contains a broken infinite IP-sets. As an example, we show that every subset with positive upper Banach density of infinite countable amenable groups forces infinite recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, E.: Recurrence in Topological Dynamics, The University Series in Mathematics. Springer, Boston, MA (1997)

    Book  Google Scholar 

  2. Beiglböck, M., Bergelson, V., Fish, A.: Sumset phenomenon in countable amenable groups. Adv. Math. 223, 416–432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergelson, V.: The multifarious Poincaré recurrence theorem, in M. Foreman, A. S. Kechris, A. Louveau, B. Weiss (eds.), Descriptive Set Theory and Dynamical Systems, London Math. Soc. Lecture Note Ser., vol. 277, pp. 31–58. Cambridge Univ. Press, Cambridge (2000)

  4. Bergelson, V.: Ultrafilters, IP sets, dynamics and combinatorial number theory. Contem. Math. 530, 23–47 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergelson, V., Hindman, N.: Additive and multiplicative Ramsey theorem in \(N\)-some elementary results. Combin. Probab. Comput. 2, 221–241 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergelson, V., Hindman, N., McCutcheon, R.: Notions of size and combinatorial properties of quotient sets in semigroups. Topol. Proc. 23, 23–60 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Bergelson, V., McCutcheon, R.: Recurrence for semigroup actions and a non-commutative Schur theorem. Contem. Math. 215, 205–222 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barros, C. J. Braga., Souza, J.. A.: Attractors and chain recurrence for semigroup actions. J. Dyn. Differ. Equ 22, 723–740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barros, C. J. Braga., Souza, J.. A., Rocha, V.: Lyapunov stability for semigroup actions. Semigroup Forum 88, 227–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Birkhoff, G.: Dynamical Systems. Amer. Math. Soc, Providence, RI (1927)

    MATH  Google Scholar 

  11. Blokh, A., Fieldsteel, A.: Sets that force recurrence. Proc. Amer. Math. Soc. 130, 3571–3578 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cairns, G., Kolganova, A., Nielsen, A.: Topological transitivity and mixing notions for group actions. Rocky Mountain J. Math. 37, 371–397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai, X., Chen, B.: On uniformly recurrent motions of topological semigroup actions. Discr. Contin. Dynam. Syst. 36, 2931–2944 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Downarowicz, T., Huczek, D., Zhang, G.: Tilings of amenable groups. J. Reine Angew. Math. 747, 277–298 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ellis, D., Ellis, R., Nerurkar, M.: The topological dynamics of semigroup actions. Trans. Amer. Math. Soc. 353, 1279–1320 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ellis, R.: Distal transformation groups. Pac. J. Math. 8, 401–405 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ellis, R., Keynes, H.: Bohr compactifications and a result of Følner. Israel J. Math. 12, 314–330 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Følner, E.: On groups with full Banach mean value. Math. Scand. 3, 245–254 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  19. Furstenberg, H.: Recurrence in Erogic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, NJ (1981)

    MATH  Google Scholar 

  20. Furstenberg, H., Weiss, B.: Topological dynamics and combinatorial number theory. J. D’Analyse Math. 34, 61–85 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Glasner, S.: Divisible properties and the Stone-Čech compactification. Canad. J. Math. 34, 993–1007 (1980)

    Article  MATH  Google Scholar 

  22. Hindman, N.: Finite sums from sequences within cells of a partition of N. J. Combin. Theory A17, 1–11 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hindman, N.: Ultrafilters and combintorial number theory. In: Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), Lecture Notes in Math., vol. 751, pp. 119–184, Springer, Berlin (1979)

  24. Hindman, N., Strauss, D.: Algebra in the Stone-Čech Compactification: Theory and Applications, 2nd edn. De Gruyter, Berlin (2012)

    MATH  Google Scholar 

  25. Hofmann, K.H.: Topological entropy of group and semigroup actions. Adv. Math. 115, 54–98 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Katznelson, Y.: Chromatic numbers of Cayley graphs on \({\mathbb{Z}}\) and recurrence. Combinatorica 21, 211–219 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Keynes, H.B., Robertson, J.B.: On ergodicity and mixing in topological transformation groups. Duke Math. J. 35, 809–819 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kontorovich, E., Megrelishvili, M.: A note on sensitivity of semigroup actions. Semigroup Forum 76, 133–141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, J.: Dynamical characterization of C-sets and its application. Fund. Math. 216, 259–286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ryban, O.V.: Li-Yorke sensitivity for semigroup actions. Ukrain. Math. J. 65, 752–759 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Souza, J.A.: Recurrence theorem for semigroup actions. Semigroup Forum 83, 351–370 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, H., Che, Z., Fu, H.: \(M\)-systems and scattering systems of semigroup actions. Semigroup Forum 91, 699–717 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, H., Long, X., Fu, H.: Sensitivity and chaos of semigroup actions. Semigroup Forum 84, 81–90 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Weiss, B.: Single orbit dynamics. AMS Regional Conference Series in Mathematics, vol. 95. Amer. Math. Soc, Providence, RI (2000)

    Google Scholar 

  35. Yan, K., Liu, Q., Zeng, F.: Classification of transitive group actions. Discr. Contin. Dyn. Syst. 41, 5579–5607 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yan, X., He, L.: Topological complexity of semigroup actions. J. Korean Math. Soc. 45, 221–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zelenyuk, Y.G.: Ultrafilters and Topologies on Groups. Expos. Math., vol. 50. De Gruyter, Berlin (2011)

Download references

Acknowledgements

The authors would like to thank the referee for many valuable and constructive comments and suggestions, especially providing Lemmas 4.14.2 and the Appendix, which help us to improve the paper. We also thank Hongzhi Hu for a very careful reading.

Funding

The authors are supported by NNSF of China (11861010, 11761012) and NSF of Guangxi Province (2018GXNSFFA281008). The first author is also supported by the Cultivation Plan of Thousands of Young Backbone Teachers in Higher Education Institutions of Guangxi Province, Program for Innovative Team of Guangxi University of Finance and Economics and Project of Guangxi Key Laboratory of Quantity Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesong Yan.

Additional information

Communicated by Jimmie D. Lawson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: When \(b {\mathcal {P}}_{\mathrm {inf, ip}}\) has the Ramesey property

Appendix: When \(b {\mathcal {P}}_{\mathrm {inf, ip}}\) has the Ramesey property

In this section we utilize the algebraic structure of the Stone–Čech compactification \(\beta G\) of a discrete semigroup \((G, \cdot )\). We shall assume that the reader is familiar with the basic facts about this structure. For an elementary introduction see [24,  Part I].

We shall show that if \(\beta G \setminus G\) is a subsemigroup of \(\beta G\), in particular if G is either right or left cancellative, then both \({\mathcal {P}}_{\mathrm {inf,ip}}\) and \(b{\mathcal {P}}_{\mathrm {inf,ip}}\) have the Ramsey property. An exact characterization of when \(\beta G \setminus G\) is a subsemigroup of \(\beta G\) is given in [24,  Theorem 4.28].

Lemma 5.1

Assume that G is a semigroup, p is an idempotent in \(\beta G \setminus G\), and \(A \in p\). Then A contains an infinite IP-set. In fact there exists an injective sequence \((x_n)_{n=1}^{\infty }\) in G such that \(FP(\{x_n\}_{n=1}^{\infty })\subseteq A\).

Proof

Let \(A^{\star }=\{x \in A: x^{-1}A \in p\}\). By [24,  Lemma 4.14] if \(x \in A^{\star }\), then \(x^{-1}A^{\star } \in p\). Choose \(x_1 \in A^{\star }\). Inductively let \(n \in {\mathbb {N}}\) and assume we have chosen injective \((x_t)_{t=1}^n\) in G such that \(E =FP(\{x_t\}_{t=1}^n) \subseteq A^{\star }\). Since \(p \in \beta G \setminus G\), \(G \setminus \{x_1, x_2, \ldots , x_n\} \in p\) so

$$\begin{aligned} \left( A^{\star } \cap \bigcap _{y \in E}y^{-1}A^{\star }\right) \setminus \{x_1, x_2, \ldots , x_n\} \in p. \end{aligned}$$

Pick \(x_{n+1} \in \left( A^{\star } \cap \bigcap _{y \in E}y^{-1}A^{\star }\right) \setminus \{x_1, x_2, \ldots , x_n\}\). \(\square \)

Lemma 5.2

Assume that G is a semigroup, \(\beta G \setminus G\) is a subsemigroup of \(\beta G\), and \(A \subseteq G\). If A contains an infinite IP-set \(FP(\{x_n\}_{n=1}^{\infty })\), then there is an idempotent \(p \in \beta G \setminus G\) such that for every \(m \in {\mathbb {N}}\), \(FP(\{x_n\}_{n=m}^{\infty }) \in p\).

Proof

We claim that for each \(m \in {\mathbb {N}}\), \(FP(\{x_n\}_{n=m}^{\infty })\) is infinite. To see this let \(m>1\) and let \(E=FP(\{x_n\}_{n=1}^{m-1})\). Then

$$\begin{aligned} FP(\{x_n\}_{n=1}^{\infty })=E \cup FP(\{x_n\}_{n=m}^{\infty }) \cup \bigcup _{y \in E} y \cdot FP(\{x_n\}_{n=m}^{\infty }) \end{aligned}$$

so one of the listed sets is infinite and thus \(FP(\{x_n\}_{n=m}^{\infty })\) is infinite.

Let \({\mathcal {A}}=\{FP(\{x_n\}_{n=m}^{\infty }): m \in {\mathbb {N}}\}\). Then \({\mathcal {A}}\) is a nested family of infinite sets so by [24,  Corollary 3.14], there is some \(q \in \beta G \setminus G\) such that \({\mathcal {A}} \subseteq q\). That is, \((\beta G \setminus G) \cap \bigcap _{m=1}^{\infty } \overline{FP(\{x_n\}_{n=m}^{\infty })} \ne \emptyset \). By [24,  Lemma 5.11], \(\bigcap _{m=1}^{\infty } \overline{FP(\{x_n\}_{n=m}^{\infty })}\) is a semigroup so \((\beta G \setminus G) \cap \bigcap _{m=1}^{\infty } \overline{FP(\{x_n\}_{n=m}^{\infty })}\) is a compact right topological semigroup so by [16,  Lemma 1], there is an idempotent \(p \in (\beta G \setminus G) \cap \bigcap _{m=1}^{\infty } \overline{FP(\{x_n\}_{n=m}^{\infty })}\). \(\square \)

Theorem 5.3

Assume that G is a semigroup, \(\beta G \setminus G\) is a subsemigroup of \(\beta G\), and \(A \subseteq G\).

  1. (1)

    \(A \in {\mathcal {P}}_{\mathrm {inf, ip}}\) if and only if there is an idempotent \(p \in \beta G \setminus G\) such that \(A \in p\);

  2. (2)

    \(A \in b {\mathcal {P}}_{\mathrm {inf, ip}}\) if and only if there exists an idempotent \(p \in \beta G \setminus G\) and \(q \in \beta G\) such that \(A \in p \cdot q\).

Proof

(1) The necessity follows from Lemma 5.2 and the sufficiency follows from Lemma 5.1.

(2) To establish the necessity, pick a sequence \((x_n)_{n=1}^{\infty }\) in G such that \(FP(\{x_n\}_{n=1}^{\infty })\) is infinite and for each \(m \in {\mathbb {N}}\) there exists \(s_m \in G\) such that \(FP(\{x_n\}_{n=1}^m)\cdot s_m \subseteq A\). Pick by Lemma 5.2 an idempotent \(p \in \beta G \setminus G\) such that for every \(m \in {\mathbb {N}}\), \(FP(\{x_n\}_{n=m}^{\infty }) \in p\). Pick \(q \in \beta G\) such that \(\left\{ \{s_m: m>n\}: n \in {\mathbb {N}}\right\} \subseteq q\). We claim that \(A \in p \cdot q\). To see this, it suffices to show that \(FP(\{x_n\}_{n=1}^{\infty }) \subseteq \{y \in G: y^{-1}A \in q\}\) by [24,  Lemma 4.12] so let \(z \in FP(\{x_n\}_{n=1}^{\infty })\) and pick \(F \in {\mathcal {P}}_f({\mathbb {N}})\) such that \(z=\prod _{t \in F} x_t\). Let \(n =\max F\). Then \(\{s_m: m>n\} \in q\) and \(\{s_m: m>n\} \subseteq z^{-1}A\).

For the sufficiency, pick an idempotent \(p \in \beta G \setminus G\) and \(q \in \beta G\) such that \(A \in p \cdot q\). Let \(B=\{y \in G: y^{-1}A \in q\}\). Then \(B \in p\) by [24,    Lemma 4.12] so pick by Lemma 5.1 an injective sequence \((x_n)_{n=1}^{\infty }\) in G such that \(FP(\{x_n\}_{n=1}^{\infty })\subseteq B\). Now let \(m \in {\mathbb {N}}\). It suffices to show that there exists \(s_m \in G\) such that \(FP(\{x_n\}_{n=1}^m) \cdot s_m \subseteq A\). Let \(E=FP(\{x_n\}_{n=1}^m)\). Then E is a finite subset of B so we may pick \(s_m \in \bigcap _{y \in E} y^{-1}A\). \(\square \)

Corollary 5.4

Assume that G is a semigroup and \(\beta G \setminus G\) is a subsemigroup of \(\beta G\). Then \({\mathcal {P}}_{\mathrm {inf,ip}}\) and \(b{\mathcal {P}}_{\mathrm {inf,ip}}\) have the Ramsey property. In particular if G is infinite and is either right cancellative or left cancellative, then \({\mathcal {P}}_{\mathrm {inf,ip}}\) and \(b{\mathcal {P}}_{\mathrm {inf,ip}}\) have the Ramsey property.

Proof

Let \(S_1\) and \(S_2\) be subsets of G. If \(S_1 \cup S_2 \in {\mathcal {P}}_{\mathrm {inf,ip}}\), pick an idempotent \(p \in \beta G \setminus G\) such that \(S_1 \cup S_2 \in p\). Since p is an ultrafilter, either \(S_1 \in p\) or \(S_2 \in p\). If \(S_1 \cup S_2 \in b{\mathcal {P}}_{\mathrm {inf,ip}}\), pick an idempotent \(p \in \beta G \setminus G\) and \(q \in \beta G\) such that \(S_1 \cup S_2 \in p \cdot q\). Since \(p \cdot q\) is an ultrafilter, either \(S_1 \in p \cdot q\) or \(S_2 \in p \cdot q\). The “in particular" conclusions follow from [24,  Corollary 4.29]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Zeng, F. & Tian, R. Force recurrence of semigroup actions. Semigroup Forum 105, 551–569 (2022). https://doi.org/10.1007/s00233-022-10271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-022-10271-9

Keywords

Navigation