Skip to main content
Log in

Left and right negatively orderable semigroups and a one-sided version of Simon’s theorem

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We study the classes \(\mathrm {LNO}\) and \(\mathrm {RNO}\) of left and right negatively orderable semigroups, arising as natural one-sided generalizations of negatively orderable semigroups (\(\mathrm {NO}\)). Negatively ordered monoids are well-known, for instance, from an equivalent formulation by Straubing and Thérien, of a celebrated theorem by I. Simon on piecewise testable languages. The main aim of this paper is to prove a one-sided version of Simon’s theorem for \(\mathrm {LNO}\) (\(\mathrm {RNO}\)). Analogues of some well-known results about negatively orderable semigroups are established in these cases. A characterisation of right negatively orderable semigroups as semigroups of certain type of decreasing mappings on partially ordered sets is obtained. We present sets of quasi-identities defining the quasivarieties \(\mathrm {LNO}\) and \(\mathrm {RNO}\) and show that these classes cannot be defined by finite sets of quasi-identities. We prove \(\mathrm {NO}=\mathrm {LNO}\cap \mathrm {RNO}\) and describe \(\mathrm {LNO}\vee \mathrm {RNO}\). As a one-sided version of Simon’s theorem, the pseudovariety generated by all finite semigroups in \(\mathrm {LNO}\) (\(\mathrm {RNO}\)) is determined and an Eilenberg-type correspondence between this pseudovariety and a variety of languages is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Our definitions of left and right negatively ordered semigroups are the dual of those in [7]. Here we follow the terminology of [5].

  2. The inverse of a negative (partial) order is called a positive (partial) order.

References

  1. Birkhoff, G.: On the structure of abstract algebras. Proc. Camb. Philos. Soc. 31, 433–454 (1935)

    Article  MATH  Google Scholar 

  2. Brzozowski, J.A., Simon, I.: Characterizations of locally testable languages. Discrete Math. 4, 243–271 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brzozowski, J.A., Fich, F.E.: Languages of \(\fancyscript {R}\)-trivial monoids. J. Comput. System Sci. 20, 32–49 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic Press, New York (1976)

    MATH  Google Scholar 

  5. Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

  6. Gould, V., Shaheen, L.: Perfection for pomonoids. Semigroup Forum 81(1), 102–127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heatherly, H.E., Tucci, R.P.: Negatively ordered semigroups. JP J. Algebra Number Theory Appl. 30(1), 81–97 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Henckell, K., Pin, J.-E.: Ordered monoids and \(\fancyscript {J}\)-trivial monoids. In: Birget, J.-C., Margolis, S., Meakin, J., Sapir, M.V. (eds.) Algorithmic Problems in Groups and Semigroups, pp. 121–137. Birkhäuser, Boston (2000)

    Chapter  Google Scholar 

  9. Higgins, P.M.: A proof of Simon’s theorem on piecewise testable languages. Theor. Comput. Sci. 178, 257–264 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  11. Juhasz, Z., Vernitski, A.: Filters in (quasiordered) semigroups and lattices of filters. Commun. Algebra 39(11), 4319–4335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Juhasz, Z., Vernitski, A.: Using filters to describe congruences and band congruences of semigroups. Semigroup Forum 83(2), 320–334 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Juhasz, Z., Vernitski, A.: Semigroups with operation-compatible Green’s quasiorders. Semigroup Forum 83(2), 387–402 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Juhasz, Z.: Left and right negatively orderable semigroups where every element has a left and a right identity. Semigroup Forum. (submitted)

  15. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press, Princeton (1956)

    Google Scholar 

  16. Lallement, G.: Semigroups and Combinatorial Applications. Wiley, New York (1979)

    MATH  Google Scholar 

  17. McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst. Theor. 8, 60–76 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pin, J.-E.: Varieties of Formal Languages, pp. 185–196. North Oxford Academic Publishers, Oxford (1986)

    Book  Google Scholar 

  19. Pin, J.-E.: A variety theorem without complementation. Izvestiya VUZ Matematika 39, 80–90 (1995). (English version: Russian Mathem. (Iz. VUZ) 39 (1995), 74-83)

    Google Scholar 

  20. Pin, J.-E.: Syntactic Semigroups, in Handbook of Formal Languages, vol. 1, pp. 679–746. Springer, Berlin (1997)

    Book  Google Scholar 

  21. Satyanarayana, M.: Positively Ordered Semigroups, Lecture Notes in Pure and Applied Mathematics, vol. 42. Marcel Dekker, Inc, New York (1979)

    Google Scholar 

  22. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. Simon, I.: Piecewise testable events. In: Proceedings of the 2nd GI Conference, Lecture Notes in Computer Science, vol. 33, pp. 34–55. Springer, Berlin (1989)

  24. Straubing, H.: On finite J-trivial monoids. Semigroup Forum 19, 107–110 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Straubing, H., Thérien, D.: Partially ordered monoids and a theorem of I. Simon. J. Algebra 119, 393–399 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vernitski, A.S.: The semigroups of order-preserving mappings: quest for quasi-identities. In: Proceedings of the Semigroup Conference in St Andrews (1997)

  27. Vernitski, A.S.: Studying semigroups of mappings using quasi-identities. Semigroup Forum 63, 387–395 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vernitski, A.S.: Ordered and J-trivial semigroups as divisors of semigroups of languages. Int. J. Algebra Comput. 18(7), 1223–1229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsófia Juhász.

Additional information

Communicated by Jean-Eric Pin.

Dedicated to my Grandmother, Dr. Rácz Miklósné Fehér Vilma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juhász, Z. Left and right negatively orderable semigroups and a one-sided version of Simon’s theorem. Semigroup Forum 96, 377–395 (2018). https://doi.org/10.1007/s00233-018-9916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-018-9916-7

Keywords

Navigation